题目描述

给出三个行数和列数均为N的矩阵A、B、C,判断A*B=C是否成立。

输入

题目可能包含若干组数据。
对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A、B、C三个矩阵。

输出

对于每组数据,若A*B=C成立,则输出Yes,否则No。每个答案占一行。

样例输入

1
2
2
100

样例输出

No


题解

随机化

如果直接把$A$与$B$的乘积算出来肯定会GG。。

考虑,如果$A*B=C$,那么$T*(A*B)=T*C$,而矩阵乘法具有结合律,因此有$(T*A)*B=T*C$。如果取$T$为$1*n$的行向量,那么每一步矩阵乘法的复杂度都是$O(n^2)$的。

于是可以使用这种方法大致判断出$A*B$是否等于$C$。随机出$T$矩阵,然后判断$(T*A)*B$与$T*C$是否相等即可。大约每组数据随机10次即可出解。

#include <cstdio>
#include <algorithm>
#define N 1010
using namespace std;
typedef long long ll;
ll a[N][N] , b[N][N] , c[N][N] , t[N] , v[N];
bool judge(int n)
{
int cnt , i , j;
ll sb , sc;
for(cnt = 1 ; cnt <= 10 ; cnt ++ )
{
for(i = 1 ; i <= n ; i ++ ) t[i] = rand() % 999 + 1;
for(i = 1 ; i <= n ; i ++ )
for(v[i] = 0 , j = 1 ; j <= n ; j ++ )
v[i] += t[j] * a[j][i];
for(i = 1 ; i <= n ; i ++ )
{
for(sb = sc = 0 , j = 1 ; j <= n ; j ++ )
sb += v[j] * b[j][i] , sc += t[j] * c[j][i];
if(sb != sc) return 0;
}
}
return 1;
}
int main()
{
srand(20011011);
int n , i , j;
while(~scanf("%d" , &n))
{
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &a[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &b[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &c[i][j]);
if(judge(n)) puts("Yes");
else puts("No");
}
return 0;
}

【bzoj2396】神奇的矩阵 随机化的更多相关文章

  1. bzoj2396: 神奇的矩阵

    与51nod1140一样.不过这题是多组数据的...坑.... #include<cstdio> #include<cstring> #include<cctype> ...

  2. bzoj2396: 神奇的矩阵(矩阵乘法+随机化)

    这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...

  3. BZOJ2396 神奇的矩阵 【随机化 + 矩乘】

    题目链接 BZOJ2396 题解 一种快速判断两个矩阵是否相等的方法: 对于两个\(n * n\)矩阵,两边同时乘一个\(n * 1\)的随机矩阵,如果结果相等,那么有很大概率两个矩阵相等 如果左边是 ...

  4. bzoj2396 神奇的矩阵(随机化)

    Time Limit: 5 Sec  Memory Limit: 512 MB 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 题目可能包含若干组数据.    对于每组数据,第一行 ...

  5. [Swust OJ 1126]--神奇的矩阵(BFS,预处理,打表)

    题目链接:http://acm.swust.edu.cn/problem/1126/ Time limit(ms): 1000 Memory limit(kb): 65535 上一周里,患有XX症的哈 ...

  6. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  7. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  8. 数学&模拟:随机化-矩阵随机化

    BZOJ2396 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立 随机生成一个N乘1的矩阵R 然后判断A*B*R是否等于C*R,而前者相当于A*(B*R) 与后者一样都可以在O(N2 ...

  9. D.Starry的神奇魔法(矩阵快速幂)

    /*D: Starry的神奇魔法 Time Limit: 1 s      Memory Limit: 128 MB Submit My Status Problem Description     ...

随机推荐

  1. HDU 2047 EOF牛肉串

    水到不想整理,线性DP #include <algorithm> #include <iostream> #include <cstring> #include & ...

  2. Windows平台下源码分析工具

    最近这段时间在阅读 RTKLIB的源代码,目前是将 pntpos.c文件的部分看完了,准备写一份文档记录下这些代码的用处.处理过程.理论公式来源.注意事项,自己还没有弄明白的地方.目前的想法是把每一个 ...

  3. 【杂题总汇】HDU-6406 Taotao Picks Apples

    [HDU 6406]Taotao Picks Apples 多校赛的时候多写了一行代码就WA了……找了正解对拍,在比赛结束后17分钟AC了

  4. linux文件访问过程和权限

    第1章 文件访问过程详解 1.1 文件访问过程 第2章 权限 2.1 对于文件rwx含义 r读取文件内容 w修改文件内容 需要r权限配合 只有w权限的时候,强制保存退出会导致源文件内容丢失 x权限表示 ...

  5. [Wolfgang Mauerer] 深入linux 内核架构 第一章 概述

    作为Linux开发爱好者,从事linux 开发有两年多时间.做过bsp移植,熟悉u-boot代码执行流程:看过几遍<linux 设备驱动程序开发>,分析过kernel启动流程,写过驱动,分 ...

  6. scrapy--dytt(电影天堂)

    喜欢看电影的小伙伴,如果想看新的电影,然后没去看电影院看,没有正确的获得好的方法,大家就可以在电影天堂里进行下载.这里给大家提供一种思路. 1.dytt.py # -*- coding: utf-8 ...

  7. 如何理解MVVM?

    随着前端页面越来越复杂,用户对于交互性要求也越来越高,MVVM模型应运而生. MVVM最早由微软提出来,它借鉴了桌面应用程序的MVC思想,在前端页面中,把Model用纯JavaScript对象表示,V ...

  8. #Python编程从入门到实践#第三章笔记

      列表简介 ​​​1.什么是列表 列表:由一系列按也顶顺序排列的元素组成.元素之间可以没有任何关系. 列表:用方括号[]表示,并用逗号分隔其中元素.名称一般为复数 2.访问元素 (1)列表是有序集合 ...

  9. No module named 'PyQt5.sip'

    使用pyinstaller打包python文件为windows可执行程序可能遇到的问题 pyinstaller yourprogram.py打包的程序双击打开一闪而过,提示上面标题的错误 把pycom ...

  10. 硬盘安装Windows Server 2008(解决系统盘符变成D盘)

    硬盘安装Windows 2008系统方法 操作系统最好用的无疑是server 2003,但是现在Server 2003支持的软件越来越少,很多是故意不支持Server 2003了, 像php5.5以上 ...