【bzoj2396】神奇的矩阵 随机化
题目描述
给出三个行数和列数均为N的矩阵A、B、C,判断A*B=C是否成立。
输入
题目可能包含若干组数据。
对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A、B、C三个矩阵。
输出
对于每组数据,若A*B=C成立,则输出Yes,否则No。每个答案占一行。
样例输入
1
2
2
100
样例输出
No
题解
随机化
如果直接把$A$与$B$的乘积算出来肯定会GG。。
考虑,如果$A*B=C$,那么$T*(A*B)=T*C$,而矩阵乘法具有结合律,因此有$(T*A)*B=T*C$。如果取$T$为$1*n$的行向量,那么每一步矩阵乘法的复杂度都是$O(n^2)$的。
于是可以使用这种方法大致判断出$A*B$是否等于$C$。随机出$T$矩阵,然后判断$(T*A)*B$与$T*C$是否相等即可。大约每组数据随机10次即可出解。
#include <cstdio>
#include <algorithm>
#define N 1010
using namespace std;
typedef long long ll;
ll a[N][N] , b[N][N] , c[N][N] , t[N] , v[N];
bool judge(int n)
{
int cnt , i , j;
ll sb , sc;
for(cnt = 1 ; cnt <= 10 ; cnt ++ )
{
for(i = 1 ; i <= n ; i ++ ) t[i] = rand() % 999 + 1;
for(i = 1 ; i <= n ; i ++ )
for(v[i] = 0 , j = 1 ; j <= n ; j ++ )
v[i] += t[j] * a[j][i];
for(i = 1 ; i <= n ; i ++ )
{
for(sb = sc = 0 , j = 1 ; j <= n ; j ++ )
sb += v[j] * b[j][i] , sc += t[j] * c[j][i];
if(sb != sc) return 0;
}
}
return 1;
}
int main()
{
srand(20011011);
int n , i , j;
while(~scanf("%d" , &n))
{
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &a[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &b[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &c[i][j]);
if(judge(n)) puts("Yes");
else puts("No");
}
return 0;
}
【bzoj2396】神奇的矩阵 随机化的更多相关文章
- bzoj2396: 神奇的矩阵
与51nod1140一样.不过这题是多组数据的...坑.... #include<cstdio> #include<cstring> #include<cctype> ...
- bzoj2396: 神奇的矩阵(矩阵乘法+随机化)
这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...
- BZOJ2396 神奇的矩阵 【随机化 + 矩乘】
题目链接 BZOJ2396 题解 一种快速判断两个矩阵是否相等的方法: 对于两个\(n * n\)矩阵,两边同时乘一个\(n * 1\)的随机矩阵,如果结果相等,那么有很大概率两个矩阵相等 如果左边是 ...
- bzoj2396 神奇的矩阵(随机化)
Time Limit: 5 Sec Memory Limit: 512 MB 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 题目可能包含若干组数据. 对于每组数据,第一行 ...
- [Swust OJ 1126]--神奇的矩阵(BFS,预处理,打表)
题目链接:http://acm.swust.edu.cn/problem/1126/ Time limit(ms): 1000 Memory limit(kb): 65535 上一周里,患有XX症的哈 ...
- 神奇的矩阵 NOI模拟题
神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...
- [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】
题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...
- 数学&模拟:随机化-矩阵随机化
BZOJ2396 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立 随机生成一个N乘1的矩阵R 然后判断A*B*R是否等于C*R,而前者相当于A*(B*R) 与后者一样都可以在O(N2 ...
- D.Starry的神奇魔法(矩阵快速幂)
/*D: Starry的神奇魔法 Time Limit: 1 s Memory Limit: 128 MB Submit My Status Problem Description ...
随机推荐
- Excel文档数据转成Plist文件
有时候我们需要导入大量数据到App中静态数据,但数据又是存在Excel中,怎么办? 第一,复制数据粘贴到一个.txt文本文档中 第二,就是撸代码了 比如,我需要导入的数据表有2列字段,name和bar ...
- 搭建MQTT代理服务器
# 解压tar zxfv mosquitto-1.4.14.tar.gz# 进入目录cd mosquitto-1.4.14# 编译make# 安装sudo make instal 1 启动代理服务在第 ...
- 海龟绘图turtle模块的使用
在本章中,我们将编写简短的.简单的程序来创建漂亮的.复杂的视觉效果.为了做到这一点,我们可以使用海龟作图软件.在海龟作图中,我们可以编写指令让一个虚拟的(想象中的)海龟在屏幕上来回移动.这个海龟带着一 ...
- ubuntu安装wine 和sourceinsght
ubuntu安装wine: 1.sudo apt-get update 2.sudo apt-get install wine 安装完成后会在当前用户目录的的家目录下生成.wine目录,该目录就是wi ...
- DFS初级剪枝及心得
关于DFS心得: 1.利用结构体,记录mark和题目要求的基本属性. 2.用到递归,使用递归时注意要设置出口,即符合要求时return,注意对递归的理解,对于不同情况可能要传递不同的参数,但出口都是一 ...
- Android 游标
静下心来,学一下Android的数据库连接. 1.直接从getReadableDatabase()与getWritableDatabase()入手. --getReadableDatabase( ...
- MyBatis---简单关系查询
联合查询 <!-- 处理关系查询相关的复杂返回数据类型(本例中未曾用到) --> <resultMap type="SchoolStudent" id=" ...
- Python数据类型一
一.整型 在Python内部对整数的处理分为普通整数和长整数,普通整数长度为机器位长,通常都是32位,超过这个范围的整数就自动当长整数处理,而长整数的范围几乎完全没限制Python可以处理任意大小的整 ...
- Thread-local storage (TLS)
线程存储原理:为变量在每一个现存的线程里分配一个实例,需要处理器支持,并不是所有都支持!支持全局的,静态的变量,但不支持局部变量. 关键字 __thread __thread int i; e ...
- 利用插件对某些网页执行javascript代码
说明 javascript在浏览器地址栏中可以运行,也可以按F12在控制台中运行,还可以写一个插件让javascript针对某些网页执行,可以使用chrome浏览器的Content scripts,C ...