题目描述

给出三个行数和列数均为N的矩阵A、B、C,判断A*B=C是否成立。

输入

题目可能包含若干组数据。
对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A、B、C三个矩阵。

输出

对于每组数据,若A*B=C成立,则输出Yes,否则No。每个答案占一行。

样例输入

1
2
2
100

样例输出

No


题解

随机化

如果直接把$A$与$B$的乘积算出来肯定会GG。。

考虑,如果$A*B=C$,那么$T*(A*B)=T*C$,而矩阵乘法具有结合律,因此有$(T*A)*B=T*C$。如果取$T$为$1*n$的行向量,那么每一步矩阵乘法的复杂度都是$O(n^2)$的。

于是可以使用这种方法大致判断出$A*B$是否等于$C$。随机出$T$矩阵,然后判断$(T*A)*B$与$T*C$是否相等即可。大约每组数据随机10次即可出解。

#include <cstdio>
#include <algorithm>
#define N 1010
using namespace std;
typedef long long ll;
ll a[N][N] , b[N][N] , c[N][N] , t[N] , v[N];
bool judge(int n)
{
int cnt , i , j;
ll sb , sc;
for(cnt = 1 ; cnt <= 10 ; cnt ++ )
{
for(i = 1 ; i <= n ; i ++ ) t[i] = rand() % 999 + 1;
for(i = 1 ; i <= n ; i ++ )
for(v[i] = 0 , j = 1 ; j <= n ; j ++ )
v[i] += t[j] * a[j][i];
for(i = 1 ; i <= n ; i ++ )
{
for(sb = sc = 0 , j = 1 ; j <= n ; j ++ )
sb += v[j] * b[j][i] , sc += t[j] * c[j][i];
if(sb != sc) return 0;
}
}
return 1;
}
int main()
{
srand(20011011);
int n , i , j;
while(~scanf("%d" , &n))
{
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &a[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &b[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &c[i][j]);
if(judge(n)) puts("Yes");
else puts("No");
}
return 0;
}

【bzoj2396】神奇的矩阵 随机化的更多相关文章

  1. bzoj2396: 神奇的矩阵

    与51nod1140一样.不过这题是多组数据的...坑.... #include<cstdio> #include<cstring> #include<cctype> ...

  2. bzoj2396: 神奇的矩阵(矩阵乘法+随机化)

    这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...

  3. BZOJ2396 神奇的矩阵 【随机化 + 矩乘】

    题目链接 BZOJ2396 题解 一种快速判断两个矩阵是否相等的方法: 对于两个\(n * n\)矩阵,两边同时乘一个\(n * 1\)的随机矩阵,如果结果相等,那么有很大概率两个矩阵相等 如果左边是 ...

  4. bzoj2396 神奇的矩阵(随机化)

    Time Limit: 5 Sec  Memory Limit: 512 MB 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 题目可能包含若干组数据.    对于每组数据,第一行 ...

  5. [Swust OJ 1126]--神奇的矩阵(BFS,预处理,打表)

    题目链接:http://acm.swust.edu.cn/problem/1126/ Time limit(ms): 1000 Memory limit(kb): 65535 上一周里,患有XX症的哈 ...

  6. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  7. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  8. 数学&模拟:随机化-矩阵随机化

    BZOJ2396 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立 随机生成一个N乘1的矩阵R 然后判断A*B*R是否等于C*R,而前者相当于A*(B*R) 与后者一样都可以在O(N2 ...

  9. D.Starry的神奇魔法(矩阵快速幂)

    /*D: Starry的神奇魔法 Time Limit: 1 s      Memory Limit: 128 MB Submit My Status Problem Description     ...

随机推荐

  1. 出门旅行(tour)

    出门旅行(tour) 题目描述: 在神奇的 oi 国度,有 n 个城市 m 条双向道路,每条道路连接了两个不同的城市.寒假到了,小 S 决定出门旅游一趟.因为以往跟团旅游多了,这次小 S 决定自驾游. ...

  2. python数据类型的转换

  3. python中enumerate函数使用

    enumerate()说明 enumerate()是python的内置函数 enumerate在字典上是枚举.列举的意思 对于一个可迭代的(iterable)/可遍历的对象(如列表.字符串),enum ...

  4. 关于IT人的一些消遣区

    https://www.csdn.net/http://www.51cto.com/http://bestcbooks.com/http://www.jobbole.com/http://www.co ...

  5. Fiddler(一)

    Fiddler:学习scrapy,不只是满足于网页上爬去信息的成功乐趣,现在开始接触爬去手机信息了,不好解决,知道过程不会轻松,但自己想去尝试.QAQ 写这篇博客是基于以下的几位大神学习笔记,我只是做 ...

  6. 阿里云Linux服务器,挂载硬盘并将系统盘数据迁移到数据盘

    因为之前用宝塔上线,宝塔只挂载了系统盘50G,打开阿里云云盘列表发现系统盘无法直接升级,故另买一块数据盘挂载到Linux服务器下,下面根据网上教程再结合我实际情况讲解一下实际操作,其实非常easy l ...

  7. php 微信公众号图文消息回复的实现 与access_token

    //代码如下 <?phpclass IndexAction extends Action { public function __construct(){ } public function i ...

  8. Python 对象(type/object/class) 作用域 一等函数 (慕课--Python高级,IO并发 第二章)

    在python中一共有两种作用域:全局作用域和函数作用域全局作用域:在全局都有效,全局作用域在程序执行时创建,在程序执行结束时销毁:所有函数以外的区域都是全局作用域:在全局作用域中定义的变量,都属于全 ...

  9. OC中的block作方法参数时的用法

    方式一.在传参时直接声明block回调方法. 1. 定义方法: - (int)doTest:(NSString *)name success:(int (^)(int param1, int para ...

  10. scrapy笔记2

    cookies的使用: 使用 scrapy.http.cookie.CookieJar 类的extract_cookies方法,CookieJar._cookies就是我们需要的cookies,是一个 ...