【bzoj2396】神奇的矩阵 随机化
题目描述
给出三个行数和列数均为N的矩阵A、B、C,判断A*B=C是否成立。
输入
题目可能包含若干组数据。
对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A、B、C三个矩阵。
输出
对于每组数据,若A*B=C成立,则输出Yes,否则No。每个答案占一行。
样例输入
1
2
2
100
样例输出
No
题解
随机化
如果直接把$A$与$B$的乘积算出来肯定会GG。。
考虑,如果$A*B=C$,那么$T*(A*B)=T*C$,而矩阵乘法具有结合律,因此有$(T*A)*B=T*C$。如果取$T$为$1*n$的行向量,那么每一步矩阵乘法的复杂度都是$O(n^2)$的。
于是可以使用这种方法大致判断出$A*B$是否等于$C$。随机出$T$矩阵,然后判断$(T*A)*B$与$T*C$是否相等即可。大约每组数据随机10次即可出解。
#include <cstdio>
#include <algorithm>
#define N 1010
using namespace std;
typedef long long ll;
ll a[N][N] , b[N][N] , c[N][N] , t[N] , v[N];
bool judge(int n)
{
int cnt , i , j;
ll sb , sc;
for(cnt = 1 ; cnt <= 10 ; cnt ++ )
{
for(i = 1 ; i <= n ; i ++ ) t[i] = rand() % 999 + 1;
for(i = 1 ; i <= n ; i ++ )
for(v[i] = 0 , j = 1 ; j <= n ; j ++ )
v[i] += t[j] * a[j][i];
for(i = 1 ; i <= n ; i ++ )
{
for(sb = sc = 0 , j = 1 ; j <= n ; j ++ )
sb += v[j] * b[j][i] , sc += t[j] * c[j][i];
if(sb != sc) return 0;
}
}
return 1;
}
int main()
{
srand(20011011);
int n , i , j;
while(~scanf("%d" , &n))
{
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &a[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &b[i][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%lld" , &c[i][j]);
if(judge(n)) puts("Yes");
else puts("No");
}
return 0;
}
【bzoj2396】神奇的矩阵 随机化的更多相关文章
- bzoj2396: 神奇的矩阵
与51nod1140一样.不过这题是多组数据的...坑.... #include<cstdio> #include<cstring> #include<cctype> ...
- bzoj2396: 神奇的矩阵(矩阵乘法+随机化)
这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...
- BZOJ2396 神奇的矩阵 【随机化 + 矩乘】
题目链接 BZOJ2396 题解 一种快速判断两个矩阵是否相等的方法: 对于两个\(n * n\)矩阵,两边同时乘一个\(n * 1\)的随机矩阵,如果结果相等,那么有很大概率两个矩阵相等 如果左边是 ...
- bzoj2396 神奇的矩阵(随机化)
Time Limit: 5 Sec Memory Limit: 512 MB 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 题目可能包含若干组数据. 对于每组数据,第一行 ...
- [Swust OJ 1126]--神奇的矩阵(BFS,预处理,打表)
题目链接:http://acm.swust.edu.cn/problem/1126/ Time limit(ms): 1000 Memory limit(kb): 65535 上一周里,患有XX症的哈 ...
- 神奇的矩阵 NOI模拟题
神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...
- [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】
题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...
- 数学&模拟:随机化-矩阵随机化
BZOJ2396 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立 随机生成一个N乘1的矩阵R 然后判断A*B*R是否等于C*R,而前者相当于A*(B*R) 与后者一样都可以在O(N2 ...
- D.Starry的神奇魔法(矩阵快速幂)
/*D: Starry的神奇魔法 Time Limit: 1 s Memory Limit: 128 MB Submit My Status Problem Description ...
随机推荐
- Linux 安装Oracle11g完整安装图文教程另附基本操作 (分享)
一.修改操作系统核心参数 在Root用户下执行以下步骤: 1)修改用户的SHELL的限制,修改/etc/security/limits.conf文件 输入命令:vi /etc/security/lim ...
- 阿里云OSS图片上传plupload.js结合jq-weui 图片上传的插件
项目中用到了oss上传,用的plupload,奈何样式上不敢恭维,特别是放在移动端上使用.于是自己把它移植到了jq weui的上传图片组件上. 更改:选择照片后确认即及时上传至oss服务器,不限制上传 ...
- linux基础目录
第1章 linux目录结构 1.1 linux目录结构的特点 一切皆文件 1)倒挂的树状结构 一切从根开始 2)linux每个目录可以挂载在不同的设备(磁盘)上.windows不容易做到. /da ...
- Unity基础
unity unity 3大场景 Asset Scene Component Asset :资源导入导出 右击资源,选择导出Unity包 导入可以直接将只有复制到Asset文件夹 创建场景 File- ...
- selenium破解极限
一共分为两端段代码: 第一段:获取cookie 第二段:通过cookie登陆 这里以百度云为例: 第一部分:保存cookies,直接在cmd中执行就好 >>> from seleni ...
- PHP实现qq三方登录
除了qq第三方登录外.还有微博,微信等第三方登录 qq第三方登录,遵循oauth2.0协议 这里是说明http://www.cnblogs.com/yx520zhao/p/6616686.html q ...
- 38.VUE学习之-全局组件和局部组件
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- Python全栈day 04
Python全栈day 04 一.解释器/编译器 补充:编译型语言和解释型语言? # 编译型:代码写完后,编译器将其变成成另外一个文件,然后交给计算机执行. c c++,c# ,java # 解释型: ...
- [CodeForces954D]Fight Against Traffic(最短路)
Description 题目链接 Solution 从起点和终点分别做一次最短路并记录结果 枚举每一条可能的边判断 Code #include <cstdio> #include < ...
- 2015 acm taipei L-Reward the Troop(uvalive 7465)(找规律)
原题链接 就大概说的是一个将军要给部下发勋章,他的部下以和别人不一样的勋章为荣,但是他没这么多钱,所以问你最少要多少钱 要求是每个人的上司是他的上两级,他的下两级是他的部下,每个人的勋章不能和他的上司 ...