CF995E Number Clicker

题目描述

Allen is playing Number Clicker on his phone.

He starts with an integer u u on the screen. Every second, he can press one of 3 buttons.

Turn \(u \to u+1 \pmod{p}\).

Turn \(u \to u+p-1 \pmod{p}\).

Turn \(u \to u^{p-2} \pmod{p}\).

Allen wants to press at most 200 buttons and end up with v v on the screen. Help him!

输入输出格式

输入格式:

The first line of the input contains 3 positive integers: \(u, v, p\)( \(0 \le u, v \le p-1\) , \(3 \le p \le 10^9 + 9\) ). \(p\) is guaranteed to be prime.

输出格式:

On the first line, print a single integer \(\ell\) , the number of button presses.

On the second line, print integers \(c_1, \dots, c_\ell\), the button presses.

For \(1 \le i \le \ell\) , \(1 \le c_i \le 3\).

We can show that the answer always exists.


长见识了。

发现这道题可以建成一个比较随机的图。

根据生日攻击,我们基本上只需要图的点数\(p\)开根号个\(\sqrt p\),就可以找到答案了。

于是进行双向搜索,合并答案即可。


Code:

#include <cstdio>
#include <map>
#define ll long long
const int N=2e5;
ll u,v,p,q[N+10],l=1,r=0,s[N],tot;
std::map <ll,ll > pre,used,opt,pre0,opt0;
void in(ll now,ll to,ll op)
{
if(!used[to])
{
used[to]=1;
opt[to]=op;
pre[to]=now;
q[++r]=to;
}
}
ll quickpow(ll d,ll k)
{
ll f=1;
while(k)
{
if(k&1) f=f*d%p;
d=d*d%p;
k>>=1;
}
return f;
}
int bfs0()
{
q[++r]=u;
while(l<=r&&r<=N)
{
ll now=q[l++];
if(now==v)
{
while(now!=u) s[++tot]=opt[now],now=pre[now];
printf("%lld\n",tot);
for(int i=tot;i;i--)
printf("%lld ",s[i]);
return 1;
}
ll to=(now+1)%p;
in(now,to,1);
to=(now+p-1)%p;
in(now,to,2);
to=quickpow(now,p-2);
in(now,to,3);
}
return 0;
}
void in0(ll now,ll to,ll op)
{
if(!used[to])
{
used[to]=1;
opt0[to]=op;
pre0[to]=now;
q[++r]=to;
}
}
ll tmp;
void swap(ll &x,ll &y){tmp=x,x=y,y=tmp;}
void bfs1()
{
used.clear();
l=1,r=0;
q[++r]=v;
while(l<=r&&r<=N)
{
ll now=q[l++];
if(pre.find(now)!=pre.end())
{
ll t=now;
while(now!=u) s[++tot]=opt[now],now=pre[now];
for(int i=1;i<=tot>>1;i++) swap(s[i],s[tot+1-i]);
now=t;
while(now!=v) s[++tot]=opt0[now],now=pre0[now];
printf("%lld\n",tot);
for(int i=1;i<=tot;i++)
printf("%lld ",s[i]);
return;
}
ll to=(now+1)%p;
in0(now,to,2);
to=(now+p-1)%p;
in0(now,to,1);
to=quickpow(now,p-2);
in0(now,to,3);
}
}
int main()
{
//freopen("dew.out","w",stdout);
scanf("%lld%lld%lld",&u,&v,&p);
if(bfs0()) return 0;
bfs1();
return 0;
}

2018.10.9

CF995E Number Clicker 解题报告的更多相关文章

  1. 【LeetCode】137. Single Number II 解题报告(Python)

    [LeetCode]137. Single Number II 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/problems/single- ...

  2. USACO Section1.5 Number Triangles 解题报告

    numtri解题报告 —— icedream61 博客园(转载请注明出处)--------------------------------------------------------------- ...

  3. LeetCode 476 Number Complement 解题报告

    题目要求 Given a positive integer, output its complement number. The complement strategy is to flip the ...

  4. Lintcode: Majority Number II 解题报告

    Majority Number II 原题链接: http://lintcode.com/en/problem/majority-number-ii/# Given an array of integ ...

  5. USACO Section 1.5 Number Triangles 解题报告

    题目 题目描述 现在有一个数字三角形,第一行有一个数字,第二行有两个数字,以此类推...,现在从第一行开始累加,每次在一个节点累加完之后,下一个节点必须是它的左下方的那个节点或者是右下方那个节点,一直 ...

  6. Winter-1-F Number Sequence 解题报告及测试数据

    Time Limit:1000MS     Memory Limit:32768KB Description ​A number sequence is defined as follows:f(1) ...

  7. CF995E Number Clicker (双向BFS)

    题目链接(洛谷) 题目大意 给定两个数 \(u\) , \(v\) .有三种操作: \(u=u+1(mod\) \(p)\) . \(u=u+p−1(mod\) \(p)\) . \(u=u^{p−2 ...

  8. 【LeetCode】264. Ugly Number II 解题报告(Java & Python)

    标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ https://leetcode.com/prob ...

  9. 【LeetCode】537. Complex Number Multiplication 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 日期 题目地址:https://leetcode.com/pr ...

随机推荐

  1. MUI常用脚本及原生JavaScript常用操作元素方法

    1.mui元素转换html元素 var obj=mui("#id")[0]; 2.事件绑定 var btn = document.getElementById("logi ...

  2. tcl之控制流-for

  3. JavaSE 第二次学习随笔(作业一)

    package homework2; import java.io.ObjectInputStream.GetField; import java.util.Arrays; public class ...

  4. C语言字符篇(一)字符串转换函数

      #include <stdlib.h>   double atof(const char *nptr);  将字符串转换成双精度浮点数 int atoi(const char *npt ...

  5. C++基础 对象的管理——单个对象的管理

    1. 为什么要有构造函数和析构函数 面向对象的思想是从生活中来,手机.车出厂时,是一样的. 这些对象都是被初始化后才上市的,初始化是对象普遍存在的一个状态. 普通方案: 对每个类提供一个 init 函 ...

  6. 猴子吃桃问题 python

    猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个,第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第10天早上想再吃时,见只剩下一个桃子了.求第 ...

  7. 【数据库】MySQL 从安装到命令

    一, MySQL 的安装于配置 我是通过百度云盘的方式下载的.建议登录百度云终端,然后点击下面的链接,选择要安装的版本,解压安装. http://www.h2ero.cn/pan/share/17cd ...

  8. Android面试收集录6 事件分发机制

    转自:秋招面试宝典. 一. 基础认知 1.1 事件分发的对象是谁? 答:事件 当用户触摸屏幕时(View或ViewGroup派生的控件),将产生点击事件(Touch事件). Touch事件相关细节(发 ...

  9. 12 Django组件-forms组件

    forms组件 校验字段功能 针对一个实例:注册用户讲解. 模型:models.py class UserInfo(models.Model): name=models.CharField(max_l ...

  10. SharpCompress的压缩文件解压和文件夹压缩

    1.前言 最近做一个功能需要用到对压缩文件的解压,就找到了这个SharpCompress不错,还能解压rar的文件.但是网上的资料和我拿到的SharpCompress.dll的方法有些出入,所以我就自 ...