P1136 迎接仪式

题目描述

LHX教主要来X市指导OI学习工作了。为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字。一旁的Orzer依次摆出“欢迎欢迎欢迎欢迎……”的大字,但是领队突然发现,另一旁穿着“教”和“主”字文化衫的Orzer却不太和谐。

为了简单描述这个不和谐的队列,我们用“\(j\)”替代“教”,“\(z\)”替代“主”。而一个“\(j\)”与“\(z\)”组成的序列则可以描述当前的队列。为了让教主看得尽量舒服,你必须调整队列,使得“\(jz\)”子串尽量多。每次调整你可以交换任意位置上的两个人,也就是序列中任意位置上的两个字母。而因为教主马上就来了,时间仅够最多作\(K\)次调整(当然可以调整不满\(K\)次),所以这个问题交给了你。

输入输出格式

输入格式:

第一行包含\(2\)个正整数\(N\)与\(K\),表示了序列长度与最多交换次数。

第二行包含了一个长度为\(N\)的字符串,字符串仅由字母“\(j\)”与字母“\(z\)”组成,描述了这个序列。

输出格式:

一个非负整数,为调整最多\(K\)次后最后最多能出现多少个“\(jz\)”子串。

数据规模与约定

对于\(10\%\)的数据,有\(N≤10\);

对于\(30\%\)的数据,有\(K≤10\);

对于\(40\%\)的数据,有\(N≤50\);

对于\(100\%\)的数据,有\(N≤500,K≤100\)。


神题啊,膜拜膜拜~~

看起来就是地痞,考虑一下如何把状态都给丢进去

因为一次涉及两个地方的位置,所以我们很难把这样的状态准确表示。

我们可以考虑先找一些特殊的突破点或者显然成立的贪心性质

说到特殊,这个序列的字符集只有\(2\)

说道性质,很显然,一个位置不会被改两次,两个一样字符的不会被改。

以上是我开了上帝视角得出的,事实上,我们可能可以想到它们,但是它们不一定会真正启发到我们

还是要看做题积累的经验

下面上正解:

\(dp_{i,j,k}\)代表在位置\(i\),\('j'\)这个字符被交换过\(j\)次,\('z'\)这个字符被交换过\(k\)次

请注意,这个交换是存在匹配的,但我们只管匹配,并不在乎具体谁和谁交换过

如果你没能理解上面这句话,请看看状态转移方程

因为一个匹配需要两个字符,所以我们从\(当前位置-2\)的地方之前进行更新

dp[i][j][k]=dp[i-1][j][k];
if(s[i]=='j'&&s[i-1]=='z'&&j&&k)
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j-1][k-1]+1);
if(s[i]=='z'&&s[i-1]=='j')
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j][k]+1);
if(s[i]=='j'&&s[i-1]=='j'&&j)
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j-1][k]+1);
if(s[i]=='z'&&s[i-1]=='z'&&k)
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j][k-1]+1);
if(j==k) ans=max(ans,dp[i][j][k]);

格外注意一下答案更新的地方,相等时更新代表什么,其实就是代表匹配上去了,这些东西都在互有交换,但现在交换次数一样了,所以我们可以更新答案

值得一提的是,我们其实并没有单以位置划分状态,可以注意到,匹配的位置是前后都有的,我们是把位置和交换的状态放在一起,才做到了无后效性

个人拙见,如有错误,烦请提出


Code:

#include <cstdio>
#include <cstring>
int max(int x,int y){return x>y?x:y;}
const int N=502;
int dp[N][103][103],n,m,ans;
char s[N];
int main()
{
scanf("%d%d%s",&n,&m,s+1);
memset(dp,-0x3f,sizeof(dp));
dp[0][0][0]=dp[1][0][0]=dp[1][s[1]=='j'][s[1]=='z']=0;
for(int i=2;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k<=m;k++)
{
dp[i][j][k]=dp[i-1][j][k];
if(s[i]=='j'&&s[i-1]=='z'&&j&&k)
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j-1][k-1]+1);
else if(s[i]=='z'&&s[i-1]=='j')
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j][k]+1);
else if(s[i]=='j'&&s[i-1]=='j'&&j)
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j-1][k]+1);
else if(s[i]=='z'&&s[i-1]=='z'&&k)
dp[i][j][k]=max(dp[i][j][k],dp[i-2][j][k-1]+1);
if(j==k) ans=max(ans,dp[i][j][k]);
}
printf("%d\n",ans);
return 0;
}

2018.9.5

洛谷 P1136 迎接仪式 解题报告的更多相关文章

  1. 洛谷P1136 迎接仪式

    题目描述 LHX教主要来X市指导OI学习工作了.为了迎接教主,在一条道路旁,一群Orz教主er穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字.一旁的Orzer依次摆出“欢迎欢迎欢迎欢迎……”的 ...

  2. 洛谷P1136 迎接仪式 动态规划

    显然,这是一道动归题. 我们发现,每次交换时只可能交换不同的字母(交换同类字母显然是没有意义的).那么每次交换等同于将 111 个 "j""j""j& ...

  3. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  4. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  5. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  6. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  7. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  8. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

  9. 洛谷 P1272 重建道路 解题报告

    P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...

随机推荐

  1. ssm整合-图片上传功能(转)

    本文介绍 ssm (Spring+SpringMVC+Mybatis)实现上传功能. 以一个添加用户的案例介绍(主要是将上传文件). 一.需求介绍 我们要实现添加用户的时候上传图片(其实任何文件都可以 ...

  2. MySQL - Linux下安装

    本安装方式仅对5.7.21版本负责. 下载地址:wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.21-linux-glibc2 ...

  3. 返回固定数据的web服务器

    import socket def handle_client(socket_con): """ 接收来自客户端的请求,并接收请求报文,解析,返回 "" ...

  4. CentOS使用yum安装drbd

    CentOS 6.x系统要升级到最新的内核才支持 CentOS 6.x rpm -ivh http://www.elrepo.org/elrepo-release-6-6.el6.elrepo.noa ...

  5. GNU汇编 存储器访问指令

    .text .global  _start _start: mov r0,#0xff str r0,[r1] ldr r2,[r1]

  6. pywinauto 的使用

    要用python实现Windows窗口程序的自动化操作,可以用ctypes调用windowsapi来实现,还可以用pywin32+pywinauto来实现,后者是别人造的轮子. pywinauto首页 ...

  7. CF797E. Array Queries

    a is an array of n positive integers, all of which are not greater than n. You have to process q que ...

  8. sql查询题目

    --1.查询在1981年入职的员工信息select * from emp where hiredate between '01-1月-1981'and '31-12月-1981'; select * ...

  9. PHP.TP框架下商品项目的优化1-时间插件、鼠标所在行高亮、布局规划页面

    1.优化搜索表单中按时间搜索的功能 添加一个时间插件datetimepicker,在lst.html中,注意要导入jquery.min.js,此处从前文的在线编辑器中导入 <!-- 导入 --& ...

  10. 0x01.被动信息收集

    被动信息收集 基于公开渠道,不与目标系统产生直接交互,尽量避免留下痕迹(不进行大量扫描,正常交互范围) 信息收集内容 IP段 域名 邮件地址(定位邮件服务器,分为个人搭建和公网邮件系统) 文档图片数据 ...