在之前的代码中我们并没有对套接字进行加密,在未加密状态下我们所有的通信内容都是明文传输的,这种方式在学习时可以使用但在真正的开发环境中必须要对数据包进行加密,此处笔者将演示一种基于时间的加密方法,该加密方法的优势是数据包每次发送均不一致,但数据包内的内容是一致的,当抓包后会发现每次传输的数据包密文是随机变化的,但内容始终保持一致,也就是说两个拥有相同内容的数据被加密后,数据包密文不同,其主要运用了基于当前时间戳的通信机制。

14.11.1 实现加盐函数

加盐函数此处笔者采用基于时间的加盐方式,取出用户分钟数与秒数并生成随机数作为盐,通过三者的混合计算出一串解密密钥对,此方法的必须保证服务端与客户端时间同步,如果不同步则无法计算出正确的密钥对,解密也就无法继续了。

代码中函数GenRandomString用于实现生成一个随机数,该函数接受一个随机数长度并返回一个字符串。接着GetPasswordSalt_OnSecGetPasswordSalt_OnMin函数分别用于根据当前秒与分钟生成一个随机的盐,函数GetXorKey则用于对特定一段字符串进行异或处理并生成一个Key,函数CRC32则用于对字符串计算得到一个哈希值。

#include <WinSock2.h>
#include <Windows.h>
#include <iostream>
#include <random>
#include <time.h> #pragma comment(lib,"ws2_32.lib") using namespace std; typedef struct
{
char random[1024];
char Buffer[4096];
}SocketPackage; // 产生长度为length的随机字符串
char* GenRandomString(int length)
{
int flag, i;
char* string;
srand((unsigned)time(NULL));
if ((string = (char*)malloc(length)) == NULL)
{
return NULL;
} for (i = 0; i < length - 1; i++)
{
flag = rand() % 3;
switch (flag)
{
case 0:
string[i] = 'A' + rand() % 26;
break;
case 1:
string[i] = 'a' + rand() % 26;
break;
case 2:
string[i] = '0' + rand() % 10;
break;
default:
string[i] = 'x';
break;
}
}
string[length - 1] = '\0';
return string;
} // 通过秒数生成盐
int GetPasswordSalt_OnSec()
{
time_t nowtime;
struct tm* p;;
time(&nowtime);
p = localtime(&nowtime);
if (p->tm_sec <= 10)
return 2;
else if (p->tm_sec > 10 && p->tm_sec <= 20)
return 5;
else if (p->tm_sec > 20 && p->tm_sec <= 30)
return 8;
else if (p->tm_sec > 30 && p->tm_sec <= 40)
return 4;
else if (p->tm_sec > 40 && p->tm_sec <= 50)
return 9;
else
return 3;
} // 通过分钟生成盐
int GetPasswordSalt_OnMin()
{
time_t nowtime;
struct tm* p;;
time(&nowtime);
p = localtime(&nowtime);
return p->tm_min;
} // 获取异或整数
long GetXorKey(const char* StrPasswd)
{
char cCode[32] = { 0 };
strcpy(cCode, StrPasswd);
DWORD Xor_Key = 0;
for (unsigned int x = 0; x < strlen(cCode); x++)
{
Xor_Key = Xor_Key + (GetPasswordSalt_OnSec() * GetPasswordSalt_OnMin()) + cCode[x];
}
return Xor_Key;
} // 计算CRC32校验和
DWORD CRC32(char* ptr, DWORD Size)
{
DWORD crcTable[256], crcTmp1; // 动态生成CRC-32表
for (int i = 0; i < 256; i++)
{
crcTmp1 = i;
for (int j = 8; j > 0; j--)
{
if (crcTmp1 & 1) crcTmp1 = (crcTmp1 >> 1) ^ 0xEDB88320L;
else crcTmp1 >>= 1;
}
crcTable[i] = crcTmp1;
}
// 计算CRC32值
DWORD crcTmp2 = 0xFFFFFFFF;
while (Size--)
{
crcTmp2 = ((crcTmp2 >> 8) & 0x00FFFFFF) ^ crcTable[(crcTmp2 ^ (*ptr)) & 0xFF];
ptr++;
}
return (crcTmp2 ^ 0xFFFFFFFF);
} int main(int argc, char *argv[])
{
// 生成一个随机数作为盐
char* uuid = GenRandomString(7);
std::cout << "随机数: " << uuid << std::endl; int sec_key = GetPasswordSalt_OnSec();
std::cout << "根据秒数生成盐: " << sec_key << std::endl; int min_key = GetPasswordSalt_OnMin();
std::cout << "根据分钟生成盐: " << min_key << std::endl; // 传入随机数作为密钥对,生成最终密钥
long key = GetXorKey(uuid);
std::cout << "最终密钥: " << key << std::endl; int crc32 = CRC32(uuid, 10);
std::cout << "crc32: " << hex << crc32 << std::endl; system("pause");
return 0;
}

14.11.2 实现加密函数

对于加密函数SendEncryptionPage的实现流程,首先在发送数据包之前调用GenRandomString()生成一个7位的随机数,并将随机数拷贝到pack.random结构内,接着调用异或函数GetXorKey(uuid)生成加密密钥,并依次循环对pack.Buffer中的数据进行逐字节加密。最后将加密数据包发送出去,并接着计算该数据包的CRC32值,并再次通过send()函数将其发送给客户端。

// 加密数据包并发送
bool SendEncryptionPage(SOCKET* ptr, char* send_data)
{
char buf[8192] = { 0 };
SocketPackage pack; memset(buf, 0, 8192); // 生成随机数并拷贝到结构体
char* uuid = GenRandomString(7);
strcpy(pack.random, uuid);
std::cout << "[客户端] 本次随机密钥对: " << uuid << std::endl; // 生成并拷贝加密数据
strcpy(pack.Buffer, send_data); int key = GetXorKey(uuid);
std::cout << " --> 生成随机 key = " << key << std::endl; for (int x = 0; x < strlen(pack.Buffer); x++)
{
pack.Buffer[x] = pack.Buffer[x] ^ key;
} // 加密数据包并发送
memcpy(buf, &pack, sizeof(SocketPackage));
send(*ptr, buf, sizeof(buf), 0); // 计算CRC32校验和,并发送给服务端
DWORD crc32 = CRC32(buf, 100);
char send_crc32[1024] = { 0 };
sprintf(send_crc32, "%x", crc32);
std::cout << " --> 发送CRC32校验和 = " << send_crc32 << std::endl; // 发送CRC32计算结果
send(*ptr, send_crc32, sizeof(send_crc32), 0);
return true;
}

14.11.3 实现解密函数

解密函数RecvDecryptPage的实现流程与加密函数需要对应,首先当收到加密后的数据包时,该数据包会被存入buf变量内存储,并强制类型转为结构体。接着调用GetXorKey函数生成随机数,该随机数是通过本机时间通过分钟与秒数生成的盐,并与用户密码进行异或得到。通过接收服务器端发过来的CRC32校验码,比对原始数据包有没有被修改过,该校验码是服务端通过数据包生成的,最后客户端计算收到的数据包CRC32是否与服务端一致,一致则继续执行异或循环对数据包进行逐字节解包。

// 接收数据包并解密
char* RecvDecryptPage(SOCKET *ptr)
{
char buf[8192] = { 0 }; // 接收加密后的数据包
memset(buf, 0, sizeof(buf));
recv(*ptr, buf, sizeof(buf), 0);
SocketPackage* pack = (SocketPackage*)buf; // 接收随机数并获取异或密钥
int key = GetXorKey(pack->random);
std::cout << "[服务端] 基于时间计算 key = " << key << std::endl; // 服务端验证网络CRC32数据包是否一致
char recv_crc32[1024] = { 0 };
recv(*ptr, recv_crc32, sizeof(recv_crc32), 0);
std::cout << " --> 收到客户端CRC32校验和 = " << recv_crc32 << std::endl; // 计算CRC32是否与发送值一致
DWORD crc32 = CRC32(buf, 100);
char this_crc32[1024] = { 0 };
sprintf(this_crc32, "%x", crc32);
std::cout << " --> 计算本地数据包CRC32校验和 = " << this_crc32 << std::endl; if (strcmp(recv_crc32, this_crc32) == 0)
{
std::cout << " --> 校验和一致" << std::endl; // 开始解密数据包
for (int x = 0; x < strlen(pack->Buffer); x++)
{
pack->Buffer[x] = pack->Buffer[x] ^ key;
} std::cout << " --> 解密后的数据: " << pack->Buffer << std::endl;
std::cout << std::endl;
return pack->Buffer;
}
}

14.11.4 数据加密收发

当有了上述完整加解密函数的封装之后读者就可以通过使用套接字的方法来实现数据包的通信,当需要接收数据时可以直接调用RecvDecryptPage()函数并传入当前活动套接字,而如果需要发送数据则也只需要调用SendEncryptionPage()函数即可,由于函数已被封装所以在传输数据时与普通套接字函数的使用没有任何区别。

针对服务端的主函数如下所示;

int main(int argc, char* argv[])
{
WSADATA WSAData;
SOCKET sock, msgsock;
struct sockaddr_in ServerAddr; if (WSAStartup(MAKEWORD(2, 0), &WSAData) != SOCKET_ERROR)
{
ServerAddr.sin_family = AF_INET;
ServerAddr.sin_port = htons(9999);
ServerAddr.sin_addr.s_addr = INADDR_ANY; sock = socket(AF_INET, SOCK_STREAM, 0);
bind(sock, (LPSOCKADDR)&ServerAddr, sizeof(ServerAddr));
listen(sock, 10);
} while (1)
{
msgsock = accept(sock, (LPSOCKADDR)0, (int*)0); // 接收数据并解密
char * recv_data = RecvDecryptPage(&msgsock);
std::cout << "获取包内数据: " << recv_data << std::endl; // 发送数据
SendEncryptionPage(&msgsock, (char*)"ok");
std::cout << std::endl; closesocket(msgsock);
}
closesocket(sock);
WSACleanup(); return 0;
}

针对客户端的主函数如下所示;

int main(int argc, char* argv[])
{
while (1)
{
WSADATA WSAData;
SOCKET sock;
struct sockaddr_in ClientAddr; if (WSAStartup(MAKEWORD(2, 0), &WSAData) != SOCKET_ERROR)
{
ClientAddr.sin_family = AF_INET;
ClientAddr.sin_port = htons(9999);
ClientAddr.sin_addr.s_addr = inet_addr("127.0.0.1"); sock = socket(AF_INET, SOCK_STREAM, 0);
int Ret = connect(sock, (LPSOCKADDR)&ClientAddr, sizeof(ClientAddr));
if (Ret == 0)
{
// 发送数据
char send_message[4096] = "hello lyshark";
SendEncryptionPage(&sock, send_message); // 接收数据
char* recv_data = RecvDecryptPage(&sock);
std::cout << "接收数据包: " << recv_data << std::endl;
std::cout << std::endl;
}
}
closesocket(sock);
WSACleanup();
Sleep(5000);
}
return 0;
}

读者可自行将上述代码片段组合起来,并分别运行服务端与客户端,当运行后读者可看到如下图所示的输出信息;

本文作者: 王瑞

本文链接: https://www.lyshark.com/post/f1f85090.html

版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

14.11 Socket 基于时间加密通信的更多相关文章

  1. Linux 系统编程 学习:07-基于socket的网络编程2:基于 UDP 的通信

    Linux 系统编程 学习:07-基于socket的网络编程2:基于 UDP 的通信 背景 上一讲我们介绍了网络编程的一些概念.socket的网络编程的有关概念 这一讲我们来看UDP 通信. 知识 U ...

  2. Python基于socket模块实现UDP通信功能示例

    Python基于socket模块实现UDP通信功能示例 本文实例讲述了Python基于socket模块实现UDP通信功能.分享给大家供大家参考,具体如下: 一 代码 1.接收端     import ...

  3. Linux 系统编程 学习:008-基于socket的网络编程3:基于 TCP 的通信

    背景 上一讲我们介绍了 基于UDP 的通信 这一讲我们来看 TCP 通信. 知识 TCP(Transmission Control Protoco 传输控制协议). TCP是一种面向广域网的通信协议, ...

  4. 开源项目SMSS发开指南(四)——SSL/TLS加密通信详解

    本文将详细介绍如何在Java端.C++端和NodeJs端实现基于SSL/TLS的加密通信,重点分析Java端利用SocketChannel和SSLEngine从握手到数据发送/接收的完整过程.本文也涵 ...

  5. Python的网络编程[0] -> socket[2] -> 利用 socket 建立 TCP/UDP 通信

    Socket 目录 socket 的 TCP/IP 通信基本建立过程 socket 的 UDP 通信基本建立过程 socket 的 UDP 广播式通信基本建立过程 socket 的多线程通信建立过程 ...

  6. 开源项目SMSS发开指南(五)——SSL/TLS加密通信详解(下)

    继上一篇介绍如何在多种语言之间使用SSL加密通信,今天我们关注Java端的证书创建以及支持SSL的NioSocket服务端开发.完整源码 一.创建keystore文件 网上大多数是通过jdk命令创建秘 ...

  7. Asp.Net Core 2.0 项目实战(11) 基于OnActionExecuting全局过滤器,页面操作权限过滤控制到按钮级

    1.权限管理 权限管理的基本定义:百度百科. 基于<Asp.Net Core 2.0 项目实战(10) 基于cookie登录授权认证并实现前台会员.后台管理员同时登录>我们做过了登录认证, ...

  8. SSL及其加密通信过程

    SSL及其加密通信过程 什么是SSL SSL英文全称Secure Socket Layer,安全套接层,是一种为网络通信提供安全以及数据完整性的安全协议,它在传输层对网络进行加密.它主要是分为两层: ...

  9. Oracle之表空间基于时间点的恢复

    记一次优化过程中:一次误操作,在不影响其他表空间的情况下:采用表空间基于时间点的恢复(TSPITR)方法恢复数据的过程. 1.TSPITR恢复原理    TSPITR目前最方便的方法是使用RMAN进行 ...

  10. 深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统

    深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/arti ...

随机推荐

  1. php处理emoji表情 存数据库

    PHP 处理emoji表情 存数据库 直接过滤掉 1 function filter_emoji($str) { 2 $regex = '/(\\\u[ed][0-9a-f]{3})/i'; 3 $s ...

  2. Containerd组件 —— containerd-shim-runc-v2作用

    1.概述 通过<浅析开源容器标准--OCI>.<浅析容器运行时>和<浅析Kubernetes CRI>这三篇博文我们了解了容器标准OCI.容器运行时以及Kubern ...

  3. 【C#/.NET】RESTful风格的Post请求与CreateAtAction

    ​  目录 引言 实现步骤 概念介绍 创建控制器 总结 引言 在构建Web应用程序时,遵循RESTful风格的API设计原则能够使我们的系统更加灵活.可扩展和易于维护.其中,Post请求在创建资源时起 ...

  4. python 将中文数字转换成阿拉伯数字

    日常遇到的中文数字主要有两种情况: 1."二零零一"这种类型,只包含[0-9]对应的十个中文字,需要转换成数字:2001.这种情况的转换十分简单. 2. "三百二十一&q ...

  5. ASP.NET 6 使用工作单元操作 MongoDB

    大家好,我是Edison. 最近工作中需要用到MongoDB的事务操作,因此参考了一些资料封装了一个小的组件,提供基础的CRUD Repository基类 和 UnitOfWork工作单元模式.今天, ...

  6. Lazy(Func<T>)的异常缓存问题

    Lazy可以提供多线程环境下的安全保障,但是用不好也是会跳到坑里. 我这里使用Lazy<t>(Func<T>)来创建一个Lazy实例,然后在需要的地方访问它的Value属性,它 ...

  7. Linux 日志收集器:syslog,syslog-ng,rsyslog

    一 参考:https://www.cnblogs.com/zhaoyong631/p/14441090.html 基本上,它们都是相同,它们都允许在中央存储库中记录来自不同类型系统的数据. 但是它们是 ...

  8. Linux 概念:存储

    块存储 (略) 文件存储 基于文件系统的本地文件存储: 基于网络的共享文件存储:NFS.Samba.Windows文件共享: 基于网络的分布式文件存储:HDFS... 对象存储 一种Key(对象ID) ...

  9. 蜂鸟E203 仿真之路

    本文记录自己在学习蜂鸟E203的过程.下面简单介绍一下仿真之路所遇到的困难和走过的坑. 1.环境开发 :一般选择ubuntu 18.04 这个版本,安装这个教程很多,可以自行学习. 2.在Linux中 ...

  10. burp抓包iPhone手机

    https://blog.csdn.net/weixin_43965597/article/details/107864200