如果企业提供 IT 在线服务,那么可观测性能力是必不可少的。“可观测性” 这个词近来也越发火爆,不懂 “可观测性” 都不好意思出门了。但是可观测性能力的构建却着实不易,每个企业都会用到一堆技术栈来组装建设。比如数据收集,可能来自某个 exporter,可能来自 telegraf,可能来自 OTEL,可能来自某个日志文件,可能来自 statsd,收集到数据之后还需要做各种过滤、转换、聚合、采样等操作,烦不胜烦,今天我们就给大家介绍一款开源的数据收集+路由器工具:Vector,解除你的上述烦恼。

Vector 简介

Vector 通常用作 logstash 的替代品,logstash 属于 ELK 生态,使用广泛,但是性能不太好。Vector 使用 Rust 编写,声称比同类方案快 10 倍。Vector 来自 Datadog,如果你了解监控、可观测性,大概率知道 Datadog,作为行业老大哥,其他小弟拍马难及。Datadog 在 2021 年左右收购了 Vector,现在 Vector 已经开源,地址是:

Vector 不止是收集、路由日志数据,也可以路由指标数据,甚至可以从日志中提取指标,功能强大。下面是 Vector 的架构图:

看起来和其他同类产品是类似的,核心就是 pipeline 的处理,有 Source 端做采集,有中间的 Transform 环节做数据加工处理,有 Sink 端做数据转发。魔鬼在细节,Vector 有如下一些特点,让它显得卓尔不群:

  • 超级快速可靠:Vector采用Rust构建,速度极快,内存效率高,旨在处理最苛刻的工作负载
  • 端到端:Vector 致力于成为从 A 到 B 获取可观测性数据所需的唯一工具,并作为守护程序、边车或聚合器进行部署
  • 统一:Vector 支持日志和指标,使您可以轻松收集和处理所有可观测性数据
  • 供应商中立:Vector 不偏向任何特定的供应商平台,并以您的最佳利益为出发点,培育公平、开放的生态系统。免锁定且面向未来
  • 可编程转换:Vector 的高度可配置转换为您提供可编程运行时的全部功能。无限制地处理复杂的用例

Vector 安装

Vector 的安装比较简单,一条命令即可搞定,其他安装方式可以参考其 官方文档

curl --proto '=https' --tlsv1.2 -sSf https://sh.vector.dev | bash

Vector 配置测试

Vector 的配置文件可以是 yaml、json、toml 格式,下面是一个 toml 的例子,其作用是读取 /var/log/system.log 日志文件,然后把 syslog 格式的日志转换成 json 格式,最后输出到标准输出:

[sources.syslog_demo]
type = "file"
include = ["/var/log/system.log"]
data_dir = "/Users/ulric/works/vector-test" [transforms.remap_syslog]
inputs = [ "syslog_demo"]
type = "remap"
source = '''
structured = parse_syslog!(.message)
. = merge(., structured)
''' [sinks.emit_syslog]
inputs = ["remap_syslog"]
type = "console"
encoding.codec = "json"

首先,[sources.syslog_demo] 定义了一个 source,取名为 syslog_demo,这个 source 的类型是 file,表示从文件中读取数据,文件路径是 /var/log/system.log,data_dir 是存储 checkpoint 数据不用关心,只要给一个可写的目录就行(Vector 自用)。然后定义了一个 transform,名字为 remap_syslog,指定这个 transform 的数据来源(即上游)是 syslog_demo,其类型是 remap,remap 是 Vector 里非常重要的一个 transform,可以做各类数据转换,在 source 字段里定义了一段代码,其工作逻辑是:

  • 来自 syslog_demo 这个 source 的日志数据,日志原文在 message 字段里(除了日志原文 message 字段,Vector 还会对采集的数据附加 host、timestamp 等字段),需要先解析成结构化的数据,通过 parse_syslog 这个函数做转换
  • 转换之后,相当于把非结构化的日志数据转换成了结构化的数据,赋值给 structured 变量,然后通过 merge 函数把结构化的这个数据和原始就有的 host、timestamp 等字段合并,然后把合并的结果继续往 pipeline 后续环节传递

[sinks.emit_syslog] 定义了一个 sink,名字是 emit_syslog,通过 inputs 指明了上游数据来自 remap_syslog 这个 transform,通过 type 指明要把数据输出给 console,即控制台,然后通过 encoding.codec 指定输出的数据格式是 json。然后通过下面的命令启动 Vector:

vector -c vector.toml

然后,你就会看到一堆的日志输出(当然,前提是你的机器上有 system.log 这个文件,我是 macbook,所以用的这个文件测试的),样例如下:

ulric@ulric-flashcat vector-test % vector -c vector.toml
...
{"appname":"syslogd","file":"/var/log/system.log","host":"ulric-flashcat.local","hostname":"ulric-flashcat","message":"ASL Sender Statistics","procid":332,"source_type":"file","timestamp":"2023-09-27T07:31:22Z"}

如上,就说明正常采集到了数据,而且转换成了 json 并打印到了控制台,实验成功。当然,打印到控制台只是个测试,Vector 可以把数据推给各类后端,典型的比如 ElasticSearch、S3、ClickHouse、Kafka 等。

Vector 部署模式

Vector 可以部署为两个角色,既可以作为数据采集的 agent,也可以作为数据聚合、路由的 aggregator,架构示例如下:

当 Vector 作为 agent 的时候,又有两种使用模式:Daemon 和 Sidecar。Daemon 模式旨在收集单个主机上的所有数据,这是数据收集的推荐方式,因为它最有效地利用主机资源。比如把 Vector 部署为 DaemonSet,收集这个机器上的所有容器中应用的日志,容器中的应用的日志推荐使用 stdout 方式打印,符合云原生 12 条要素。架构图如下:

当然,也可以使用 Sidecar 模式部署,这样占用的资源更多(毕竟,每个 Pod 里都要塞一个 Vector 容器),但是更灵活,服务所有者可以随意搞自己的日志收集方案,不用依赖统一的日志收集方案。架构图如下:

Vector 总结

夜莺社区里已经有很多小伙伴从 logstash 迁移到了 Vector,并普遍表示 Vector YYDS,如果你还没听过 Vector,赶紧去试试吧。其他的我也不啰嗦,请各位移步 Vector 官方文档,本文最重要的价值就是让你知道有这么个好东西 :-)

扩展阅读:

可观测性数据收集集大成者 Vector 介绍的更多相关文章

  1. 第六版PMBOK中工具与技术的介绍:数据收集数据分析数据表现

    数据收集技术: 1.头脑风暴:收集关于项目方法的创意和解决方案.2.焦点小组:召集预定的相关方和主题专家,了解他们对所讨论的产品服务或成果的期望和态度.主持人引导大家互动式讨论.3.访谈:通过与相关方 ...

  2. SQL Server自动化运维系列——关于数据收集(多服务器数据收集和性能监控)

    需求描述 在生产环境中,很多情况下需要采集数据,用以定位问题或者形成基线. 关于SQL Server中的数据采集有着很多种的解决思路,可以采用Trace.Profile.SQLdiag.扩展事件等诸多 ...

  3. C++ 中的std::vector介绍(转)

    vector是C++标准模板库中的部分内容,它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库.vector之所以被认为是一个容器,是因为它能够像容器一样存放各种类型的对象,简单地说,vec ...

  4. 网站统计中的数据收集原理及实现(share)

    转载自:http://blog.codinglabs.org/articles/how-web-analytics-data-collection-system-work.html 网站数据统计分析工 ...

  5. std::vector介绍

    vector是C++标准模板库中的部分内容,它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库.vector之所以被认为是一个容器,是因为它能够像容器一样存放各种类型的对象,简单地说,vec ...

  6. 使用nginx lua实现网站统计中的数据收集

    导读网站数据统计分析工具是各网站站长和运营人员经常使用的一种工具,常用的有 谷歌分析.百度统计和腾讯分析等等.所有这些统计分析工具的第一步都是网站访问数据的收集.目前主流的数据收集方式基本都是基于ja ...

  7. SQL Server自动化运维系列 - 多服务器数据收集和性能监控

    需求描述 在生产环境中,很多情况下需要采集数据,用以定位问题或者形成基线. 关于SQL Server中的数据采集有着很多种的解决思路,可以采用Trace.Profile.SQLdiag.扩展事件等诸多 ...

  8. Flunetd 用于统一日志记录层的开源数据收集器

    传统的日志查看方式 使用fluentd之后 一.介绍 Fluentd是一个开源的数据收集器,可以统一对数据收集和消费,以便更好地使用和理解数据. 几大特色: 使用JSON统一记录 简单灵活可插拔架构 ...

  9. 从0到1搭建基于Kafka、Flume和Hive的海量数据分析系统(一)数据收集应用

    大数据时代,一大技术特征是对海量数据采集.存储和分析的多组件解决方案.而其中对来自于传感器.APP的SDK和各类互联网应用的原生日志数据的采集存储则是基本中的基本.本系列文章将从0到1,概述一下搭建基 ...

  10. SQL Server 自动化运维系列 - 多服务器数据收集和性能监控

    需求描述 在生产环境中,很多情况下需要采集数据,用以定位问题或者形成基线. 关于SQL Server中的数据采集有着很多种的解决思路,可以采用Trace.Profile.SQLdiag.扩展事件等诸多 ...

随机推荐

  1. 使用Ajax进行数据请求

    ​ 一.Ajax开源库有很多选择,大家可以根据需求自己选择 jQuery:jQuery是一个广泛应用的JavaScript库,它提供了简洁而强大的API来处理Ajax请求.通过$.ajax()方法或其 ...

  2. Git存储

    Git还提供了一个贮藏的功能.如果你某个分支开发过程中,这个分支的内容是要在本月月底上线的,但是生产上已经出现了一个重大bug,需要你立马去修复.你在分支开发的内容已经开发一部分了,工作区有内容是不能 ...

  3. 图像分割_评价指标_PSNR峰值信噪比和SSIM结构相似度

    PSNR psnr是"Peak Signal to Noise Ratio"的缩写,即峰值信噪比,是一种评价图像的客观标准. 为了衡量经过处理后的影像品质,我们通常会参考PSNR值 ...

  4. XCTF-CGfsb

    考察知识点 PWN.格式化字符串漏洞 题目链接 https://adworld.xctf.org.cn/task/answer?type=pwn&number=2&grade=0&am ...

  5. linux下创建虚拟环境

    安装虚拟环境: 1 sudo apt-get install virtualenvwrapper 配置环境变量: 1.创建目录用于存放虚拟环境. 1 mkdir $HOME/.virtualenvs ...

  6. 【算法】编写一个函数,返回两个正数的和,有可能超过ulong长度

    编写一个函数,返回两个数字的和.输入数字是字符串,函数必须返回一个字符串. 示例: 添加("123","321"):->"444" 添 ...

  7. markdown之mermaid

    官方文档 01 简单的流程图 TD或TB:top to bottom,从上到下的流程图 LR:从左到右 其它:RL,BT flowchart LR; A([节点A的圆矩框]) --> |AB之间 ...

  8. Unity的UnityStats: 属性详解与实用案例

    UnityStats 属性详解 UnityStats 是 Unity 引擎提供的一个用于监测游戏性能的工具,它提供了一系列的属性值,可以帮助开发者解游戏的运行情况,从而进行优化.本文将详细介绍 Uni ...

  9. WPF实现类似ChatGPT的逐字打印效果

    背景 前一段时间ChatGPT类的应用十分火爆,这类应用在回答用户的问题时逐字打印输出,像极了真人打字回复消息.出于对这个效果的兴趣,决定用WPF模拟这个效果. 真实的ChatGPT逐字输出效果涉及其 ...

  10. go-zero 是如何实现令牌桶限流的?

    原文链接: 上一篇文章介绍了 如何实现计数器限流?主要有两种实现方式,分别是固定窗口和滑动窗口,并且分析了 go-zero 采用固定窗口方式实现的源码. 但是采用固定窗口实现的限流器会有两个问题: 会 ...