lxl 学长讲课笔记

常数种可能性的状态

通过预先处理多种状态的信息,从而快速的转换状态。

经典操作:flip

分析信息的思路

  • 利用线段树

利用线段树的时候,如何合并两个分支区间的信息,我们需要有如下注意:

  1. 答案 - 依赖的信息,继续的依赖,这样就能找到需要维护的东西。这终会产生闭包。

  2. 合并时,我们只需要考虑跨过分治区间对于答案的贡献,对于不同的情况进行讨论即可。

线段树其实就是十分自然的序列上的分治树,所以我们处理线段树的过程也可以看作分治的过程。

只是在这里,两个分治区间的信息可以快速地合并罢了。

  • 对于不独立信息的处理

独立的信息指区间 \(\max\) 区间和问题。

不独立的如配对相关问题,经典的有前驱后继,或者 \(a_i + a_j = w\) 的问题。

一种做法是离线进行扫描线,但是不能带修,一种是强行进行高位扫描线,也就是莫队,可以带修,但是复杂度可能无法接受。

然而更好的做法我们需要尝试将不独立的信息变的独立

  1. 配对问题中合理的利用 pre 会有奇效!

  2. 配对问题可能出现 \(O(n)\) 影响 pre 的情况,我们需要合理利用 支配 的性质来减少不必要的影响。

例如 P6617 查找 Search 中有很好的体现。

  • 在什么地方使用数据结构?

一般来说,我们有两种方案:

  1. 对于信息建立数据结构,在询问时对其进行查询。
  2. 对于询问建立数据结构,利用信息更新最终答案。

CF702F T-Shirts 中有很好的体现,这两种思路都可以。

小技巧

颜色段均摊

对于 ODT 来说,其区间推平的复杂度是 \(O((n + m) \log n)\) 的,十分的优秀,但是对于查询来说,我们需要通过分块或者线段进行辅助,从而达到正确的复杂度。

有一种特殊情况例外:
如果推平和查询同时发生,意味着推平时对于每一段查询的复杂度是没有问题的!

判断是否可以均摊,我们可以看是否能够构造出一个操作序列使得序列复原,如果可以复原,那么基本是不可以均摊的。

或者我们看是否能找到一个量,不增,或者不减,或者有一个神秘的上界。

更详细的文章:# 算法学习笔记(42): 颜色段均摊

容均摊

对于 \(\sqrt x\) 的操作,可能可以通过 \(\max - \min\) 的势能来搞定。

如果发现极差会变化:\(\max - \min \ne \sqrt{\max} - \sqrt {\min}\),那么便可以暴力递归下去修改,否则可以整体打一个 \(\sqrt x\) 的标记。对于区间加减,在线段树上至多影响 \(O(\log n)\) 个节点的势能,所以复杂度并不会有问题。

类似的操作有 \(\lfloor \frac x d \rfloor\),这可以将除法操作变为对于区间的加减操作。

事实上吉司机线段树对于区间取 \(\min / \max\) 的操作也是利用了容均摊,将对于最值的操作分成两套标记:最值与非最值,从而达到合理的复杂度。

自由度与扫描线

自由度指的是询问中变量的数量,例如一位区间的自由度为 \(2\)。

如果将动态问题转化为静态问题,自由度 \(+1\),也就是增加了 时间 这一维度,这也常常是扫描线的做法。

很多时候,我们可以将询问与信息的影响放在一个二维平面上进行理解,从而得到扫描线的做法。

更详细的文章:

换维扫描线

其处理的修改与询问大概类如:

通过换维扫描线使得:

  • 区间加 \(\to\) 单点加
  • 单点查 \(\to\) 区间查

通俗一点来说,就是对于修改建立数据结构!

区间子区间问题

形式就是多次询问给定区间 \((l, r)\),求形如 \(\sum_{i = l}^r \sum_{j = i}^r f(i, j)\) 的式子。

一般来说,我们可以从如下几个步骤入手:

  1. 考虑只是一个区间怎么做,是否有很好的性质或者充要条件?
  2. 考虑只有一次询问怎么做,是否可以进行扫描线,或者进行分治?
    • 如果可以扫描线,那么这个问题是否可以通过历史版本和搞定?
    • 如果可以分治,是否可以利用询问挂在区间上搞定?
  3. 考虑每个点对于那些区间有贡献,放在二维平面上理解,利用甚至 \(O(n \log^2 n)\) 的树套树?
  4. 考虑 \(O(n)\) 计算的经典优化方法?
  5. 考虑这是不是一个 \(\mathrm{fAkE}\) 的式子,可以利用类似 \(O(\frac {n^2}{w})\) 的东西碾过去?
  6. 下一道题?(雾

基于区间逆序对的思考

区间相关的信息,维度与自由度,莫队

双前缀莫队:\(f(l, r, x, y) \to f(1, r, x, y) - f(1, l - 1, x, y) \to f(1, r, 1, y) - f(1, r, 1, x - 1) - f(1, l - 1, 1, y) + f(1, l - 1, 1, x - 1)\)。将 \(4\) 自由度转化为 \(2\) 自由度的问题,利用莫队。

莫队和可撤销莫队至多差一个 \(O(\log n)\) 的复杂度

lxl学长讲课笔记的更多相关文章

  1. 【分享】学长的安利来了~~O(∩_∩)O

    前言:应栋哥要求,学长把演讲稿稍微整理下发布出来,这可以算是一篇安利文,也可以说是一篇经历文吧.作为一个确确实实从软工里收获到挺多东西的过来人,学长希望可以通过学长的经历来让你们对软工更加期待. 安利 ...

  2. 黄学长模拟day1 某种密码

    关于某种密码有如下描述:某种密码的原文A是由N个数字组成,而密文B是一个长度为N的01数串,原文和密文的关联在于一个钥匙码KEY.若KEY=∑▒[Ai*Bi],则密文就是原文的一组合法密码. 现在有原 ...

  3. Week1 学长的经验教训

    我手头拿到的是上一届学长的软件工程大作业,作业的名称是——汽车4S店信息管理系统. 这个大作业我认为还是非常典型的传统模式的大作业,由手机端(客户端)和服务端组成,非常的传统.             ...

  4. 对学长所谓“改变世界的游戏”《shield star》的运行感想-毛宇部分(完整版本请参考团队博客)

    对于学长项目<shield star>的思考和看法: Ryan Mao ((毛宇)  110616-11061171 试用了一下学长黄杨等人开发的<shield star>游戏 ...

  5. 学长们的求职血泪史(C/C++/JAVA)

    以下分三个方向讲解,每个方向都是一个学长独自撰稿. (一)  C语言篇 C语言求职血泪史 华为(实习):机试.一面.性格测试被鄙视.优招被鄙视.普招被鄙视 锐捷:笔试.面试莫名其妙被鄙视 创新工场:笔 ...

  6. Team Homework #1 学长“学霸英语学习软件”试用

    简介: 一款英语单词记忆和管理辅助软件. 基本功能: 内置GRE词汇及其常考形态.Webster英语解释 单词发音功能 单词测验模式 简易词典功能 基本界面 词库单词读取 单词测试 优点: 1.界面简 ...

  7. 王学长的LCT标程

    善良的王学长竟然亲自打了一遍QAQ好感动QAQ #include<iostream> #include<cstdio> #include<cmath> #inclu ...

  8. 一位学长的ACM总结(感触颇深)

    发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...

  9. 王学长的AAA树

    让我们响应王学长的号召勇敢的分开写splay和lct吧! 分开写大法好!!!!!!!!!!!杜教的ch[4]弱爆了!!!! #include <stdio.h> #include < ...

  10. 个人技术博客--团队Git规范(参考西瓜学长)

    援引西瓜学长:GitHub团队项目合作流程 废话少说直接写 1.fork 1.对于组员来说第一步就是fork 2.点击fork之后 上面是我们的团队仓库 切换回自己的仓库 就会看到 是fork于团队仓 ...

随机推荐

  1. 力扣455(java&python)-分发饼干(简单)

    题目: 假设你是一位很棒的家长,想要给你的孩子们一些小饼干.但是,每个孩子最多只能给一块饼干. 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸:并且每块饼干 j,都有 ...

  2. 力扣29(java)-两数相除(中等)

    题目: 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 整数除 ...

  3. 基于 EventBridge 构建数据库应用集成

    ​简介:本文重点介绍 EventBridge 的新特性:数据库 Sink 事件目标. 作者:赵海 引言 事件总线 EventBridge 是阿里云提供的一款无服务器事件总线服务,支持将阿里云服务.自定 ...

  4. Docker镜像基本原理

    前言 Docker系列文章: 如果没有安装过Docker请参考本文最后部分,大家从现在开始一定要按照我做的Demo都手敲一遍,印象会更加深刻的,加油! 为什么学习Docker Docker基本概念 什 ...

  5. VSCode 在 windows 下默认添加 _WIN32 的问题

    现象 在 VSCode 在 windows 下环境中使用时,会默认添加 _WIN32 ,会出现查看代码时,出现错误提示,现象如下 检测到 #include 错误.请更新 includePath.已为此 ...

  6. linux安装nvm和node

    linux安装nvm和node 一.环境 debian10 nodejs 二.安装 2.1 安装NVM 运行以下命令下载并运行 NVM 安装脚本: curl https://raw.githubuse ...

  7. 【web安全】隐藏nginx头文件信息

    摘要 Nginx作为开源web中间件,被广泛应用.因此源编译或者yum安装,都会带有其原有的nginx版本.很容易被针对,因此,通过修改nginx的源码.隐藏nginx版本和头部信息,保障nginx的 ...

  8. Java中的多态、抽象类和接口简述

    1. 引言 本文对Java编程中的多态.抽象类和接口概念进行了简明扼要的讲解,并对extends和implements进行了辨析. 2. 多态 多态是指所调用的方法只有在运行的时候才可以明确,如下例所 ...

  9. JS制作日历小事件和数码时钟--JavaScript实例集锦(初学)

    运用JS的innerHTML,和for循环实现日历小部件内容和日期的转换. <!DOCTYPE html> <html> <head> <title>日 ...

  10. uniapp中正确使用echart

    uniapp中不能直接使用百度echart,要么就只能嵌入html,然后在html中进入echart进行使用,这样非常不方便, 下面介绍这个插件,对百度echart进行局部小改造,使他能在uniapp ...