作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。

终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命。

具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R的袜子中随机选出两只来穿。

尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。

你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。

当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

输入格式

第一行包含两个正整数N和M,N为袜子的数量,M为小Z所提的询问的数量。

接下来一行包含N个正整数\(C_i\),其中\(C_i\)表示第i只袜子的颜色,相同的颜色用相同的数字表示。

再接下来M行,每行两个正整数L,R表示一个询问。

输出格式

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。

若该概率为0则输出0/1,否则输出的A/B必须为最简分数。

输入样例:

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

输出样例:

2/5
0/1
1/1
4/15

第一次接触莫队算法

kuangbin大佬的分析:莫队算法可以解决一类不修改、离线查询问题。

写了个直接分段解决的办法。把1~n分成sqrt(n)段。unit = sqrt(n)m个查询先按照第几个块排序,再按照 R排序。然后直接求解。

学习笔记:

对于一个区间的概率,就是每种颜色选2个相同的方案数的和/总的选择方案数

化简之后,就是区间内 (每种颜色的数量^2的和-区间长度)/(区间长度*区间长度减1)

问题变为快速求一个区间内每种颜色数量的平方的和

线段树?可以每种颜色单独维护平方,但是会被卡

所以用到了莫队算法

使用范围:

可离线且在得到区间[l,r]的答案后,能在O(1)或O(log2n)得到区间[l,r+1]或[l−1,r]的答案

其实就是找一个数据结构支持插入、删除时维护当前答案。

这样的话,如果已知[l,r]的答案,要求[l’,r’]的答案,我们很容易通过|l – l’|+|r – r’|次转移内求得。

抽象成平面上的点,我们要按一定顺序计算每个值,那开销就为曼哈顿距离的和。曼哈顿距离最小生成树

这里通常用分块解决

n个数分块

按区间排序,以左端点所在块内为第一关键字,右端点为第二关键字,进行排序,

复杂度分析是这样的:

1、\(i\)与\(i+1\)在同一块内,r单调递增,所以r是O(n)的。由于有\(n^{0.5}\)块,所以这一部分时间复杂度是\(n^{1.5}\)。

2、i与i+1跨越一块,r最多变化n,由于有\(n^{0.5}\)块,所以这一部分时间复杂度是\(n^{1.5}\)。

3、i与i+1在同一块内时l变化不超过\(n^{0.5}\),跨越一块也不会超过\(n^{0.5}\),由于有m次询问(和n同级),所以时间复杂度是\(n^{1.5}\).

于是就是\(O(n^{1.5})\)了

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 50050;
const int minn = 50050;
struct Query {
int L, R, id;
}node[maxn]; ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); } struct Ans {
ll a, b;
//分数简化操作
void reduce() {
ll d = gcd(a, b);
a /= d, b /= d;
}
}ans[maxn];
int a[maxn], num[maxn], n, m, unit; //把1~n分成sqrt(n)段,unit=sqrt(n)m个查询先按照第几个块排序,再按照R排序,分块处理
bool cmp(Query a, Query b) {
if (a.L / unit != b.L / unit)
return a.L / unit < b.L / unit;
else return a.R < b.R;
} void solve() {
ll tmp = 0;
memset(num, false, sizeof num);
int L = 1, R = 0;
//莫队算法核心部分
for (int i = 0; i < m; ++i) {
while (R < node[i].R) {
R++;
tmp -= (ll)num[a[R]] * num[a[R]];
num[a[R]]++;
tmp += (ll)num[a[R]] * num[a[R]];
}
while (R > node[i].R) {
tmp -= (ll)num[a[R]] * num[a[R]];
num[a[R]]--;
tmp += (ll)num[a[R]] * num[a[R]];
R--;
}
while (L < node[i].L)
{
tmp -= (ll)num[a[L]] * num[a[L]];
num[a[L]]--;
tmp += (ll)num[a[L]] * num[a[L]];
L++;
}
while (L > node[i].L)
{
L--;
tmp -= (ll)num[a[L]] * num[a[L]];
num[a[L]]++;
tmp += (ll)num[a[L]] * num[a[L]];
}
ans[node[i].id].a = tmp - (R - L + 1);
ans[node[i].id].b = (ll)(R - L + 1) * (R - L);
ans[node[i].id].reduce();
}
} int main() {
//freopen("in.txt", "r", stdin);
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
while (cin >> n >> m) {
for (int i = 1; i <= n; ++i)cin >> a[i];
for (int i = 0; i < m; ++i) {
node[i].id = i;
cin >> node[i].L >> node[i].R;
}
unit = (int)sqrt(n);
sort(node, node + m, cmp);
solve();
for (int i = 0; i < m; i++)
printf("%lld/%lld\n", ans[i].a, ans[i].b);
}
}

BZOJ 2038: [2009国家集训队]小Z的袜子【莫队算法裸题】的更多相关文章

  1. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  2. [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法

    今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子

    二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...

  4. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  5. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  6. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 分块

    分块大法好 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MB Submit: 2938  Solved: 13 ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

  10. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) 【莫队算法模版】

    任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题意概括: 有 N 只袜子(分别编号为1~N),有 M 次查询 (L, R)里面随机 ...

随机推荐

  1. [转载] Winform WebBrowser 使用 Edge 内核

    原文地址 C# 设置 WebBrowser 使用 Edge 内核_c# webbrowser 内核 - CSDN 博客 原文内容 1. 问题描述 用 C# 写了一个小工具, 需要显示网页上的内容, 但 ...

  2. JXNU acm选拔赛 最小的数

    最小的数 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submissi ...

  3. jextract的使用

    写这个博客的目的:新人去看jextract的官网是看不懂的,就算看懂了也不会使用,一头雾水,我会从0开始教如何使用,如何搭配java去调用c函数. 首先我们得了解jextract是什么,官网的解释是一 ...

  4. 数字孪生和GIS系统融合能为水利领域带来什么改变?

    随着科技的不断进步,数字孪生和GIS系统的融合应用逐渐成为了水利领域的新趋势.数字孪生是指通过数字化技术模拟物理实体和过程,将现实世界与虚拟世界相结合的技术,而GIS系统则是地理信息系统,用于收集.存 ...

  5. 【Python】【OpenCV】定位二维码

    相较于BarCode,QRCode有明显的特征区域,也就是左上角.右上角.左下角三个"回"字区域,得益于hierarchy中,父子关系的轮廓是连续的(下标),所以这个时候我们就可以 ...

  6. 【JVM】一文掌握JVM垃圾回收机制

    作为Java程序员,除了业务逻辑以外,随着更深入的了解,都无法避免的会接触到JVM以及垃圾回收相关知识.JVM调优是一个听起来很可怕,实际上很简单的事. 感到可怕,是因为垃圾回收相关机制都在JVM的C ...

  7. 微短剧市场暴涨267.65%,用微短剧场景AUI Kit精巧入局

    微短剧,不仅上头,更要上心. 微短剧,深度"拿捏"了这个碎片化时代,也是刚过去的2023年绕不开的热词. 与传统影视剧制作精益求精.耗时长相反,门槛与耗时"双低" ...

  8. C++ Traits Classes

    参考博文 https://blog.csdn.net/lihao21/article/details/55043881 Traits classes 的作用主要是用来为使用者提供类型信息.在 C++ ...

  9. JS模块化编程规范1——require.js

    目录 1. 概述 2. 详论 2.1. 定义 2.2. 调用 2.3. 入口 3. 结果 4. 参考 1. 概述 require.js是各种网络APP中非常常见的JS依赖库,它其实不仅仅是个模块加载器 ...

  10. 使用Terraform部署华为云和kubernetes资源

    本文分享自华为云社区<使用Terraform部署华为云和kubernetes资源>,作者: 可以交个朋友. Terraform概述 Terraform 是由 HashiCorp 创建的开源 ...