洛谷传送门

CF1550D


分析

对于excellent的 \(a\) 来说 \(|a_i-i|=x\) 的值是固定的,考虑枚举它

一半正一半负时函数值是最大的,当 \(n\) 为奇数时要分为两种情况(不过可以通过杨辉三角合并)

问题是,由于 \(l,r\) 的范围,并不能做到所有位置都能可正可负,不过不超过 \(mn=\min\{1-l,r-n\}\) 时是可以的,也就是 \(C(n,mid)*mn\)。

之后应分为两个阶段,绝对值增加1会产生1个不能可正可负,不超过 \(mx=\max\{1-l,r-n\}\) 时,枚举 \(i(mn+i=x)\) 即为 \(C(n-i,mid-i)\)

或者产生2个不能可正可负,此时在上一阶段的上界基础上继续增加,就是 \(C(n-i*2-(mx-mn),mid-i-(mx-mn))\)

注意 \(i\) 在第一阶段超过 \(mid\) 抑或是第二阶段超过 \(mid-(mx-mn)\) 时已经无法产生贡献,此时可直接终止,那么复杂度就是 \(O(n)\) 的


代码(里面的 \(mx\) 已经减去了 \(mn\))

#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;
const int N=200011,mod=1000000007;
int inv[N],fac[N],n,L,R,mn,mx,mid,odd,ans;
int iut(){
int ans=0,f=1; char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans*f;
}
void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
int main(){
fac[0]=inv[0]=fac[1]=inv[1]=1;
for (int i=2;i<N;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (int i=2;i<N;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (int T=iut();T;--T,putchar(10)){
n=iut(),L=iut(),R=iut(),mid=(n+1)>>1;
mn=min(1-L,R-n),mx=max(1-L,R-n)-mn;
odd=n&1,ans=1ll*mn*C(n+odd,mid)%mod;
for (int i=1;i<=mx&&i<=mid;++i) Mo(ans,C(n-i+odd,mid-i));
for (int i=1;i<=mid-mx&&i*2+mx<=n;++i) Mo(ans,C(n-i*2-mx+odd,mid-mx-i));
print(ans);
}
return 0;
}

#排列组合#CF1550D Excellent Arrays的更多相关文章

  1. CF1550D Excellent Arrays

    考虑每个数一定是这个形式: \(i + x,i - x\) 所以如果我们要构造一个最大的数组. 那一定是这样的形式: 有一半为\(i + x\),有一半\(i - x\) 那么我们发现每个数有这样一个 ...

  2. java-算法-排列组合

    package com.qinghuainvest.utils.algorithm; import java.util.ArrayList; import java.util.Arrays; impo ...

  3. 数组排列组合问题——BACKTRACKING

    BACKTRACKING backtracking(回溯法)是一类递归算法,通常用于解决某类问题:要求找出答案空间中符合某种特定要求的答案,比如eight queens puzzle(将国际象棋的八个 ...

  4. 给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合

    给定数组a[1,2,3],用a里面的元素来生成一个长度为5的数组,打印出其排列组合 ruby代码: def all_possible_arr arr, length = 5 ret = [] leng ...

  5. JavaScript 二维数组排列组合2

    <html> <head> <title>二维数组排列组合</title> </head> <body> <div id= ...

  6. JavaScript 递归法排列组合二维数组2

    <html> <head> <title>二维数组排列组合</title> </head> <body> <div id= ...

  7. JavaScript 递归法排列组合二维数组

    <html> <head> <title>二维数组排列组合</title> </head> <body> <div id= ...

  8. JavaScript 二维数组排列组合

    <html> <head> <title>二维数组排列组合</title> </head> <body> <div id= ...

  9. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

  10. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

随机推荐

  1. win32 - ListView_GetItemPosition的使用

    ListView_GetItemPosition : Gets the position of a list-view item 理论上获得桌面图标的正确方法是使用shell项,=> IFold ...

  2. redis7源码分析:redis 启动流程

    1. redis 由 server.c 的main函数启动 int main(int argc, char **argv) { ... // 上面的部分为读取配置和启动命令参数解析,看到这一行下面为启 ...

  3. FART 脱壳机原理分析

    FART是一个基于Android 源码修改的脱壳机 可以脱整体壳和抽取壳 FART脱壳的步骤主要分为三步: 1.内存中DexFile结构体完整dex的dump 2.主动调用类中的每一个方法,并实现对应 ...

  4. Docker实践之07-数据管理

    目录 一.数据卷概述 二.创建数据卷 三.查看数据卷 四.挂载数据卷 五.删除数据卷 六.挂载主机目录或文件 七.挂载数据卷与主机目录/文件的比较 一.数据卷概述 数据卷是一个可供一个或多个容器使用的 ...

  5. 一文上手图数据备份恢复工具 NebulaGraph BR

    作者:NebulaGraph 工程师 Kenshin NebulaGraph BR 开源已经有一段时间了,为了给社区用户提供一个更稳.更快.更易用的备份恢复工具,去年对其进行了比较大的重构.Nebul ...

  6. C#系列文章索引

    由于有读者说,是否可以讲C#一类的文章都统一在一起,因此我做了个索引文章置顶起来,以后C#相关文章也会同步更新到该索引文章下,以便查找 .Neter所应该彻底了解的委托 - RyzenAdorer - ...

  7. 四: Mysql用户管理

    # 用户与权限管理 MySQL用户可以分为普通用户和root用户, root用户是超级管理员,拥有所有权限,包括创建用户.删除用户和修改用户的密码等管理权限:普通用户只拥有被授予的各种权限. MySQ ...

  8. ants - 目前开源最优的协程池

    ants - 目前开源最优的协程池 目前我们的项目重度使用 ants 协程池,在开启一个 go 的时候并不是用 go 关键字,而是用一个封装的 go 函数来开启协程.框架底层,则是使用 ants 项目 ...

  9. 【容斥、插值】P3270 [JLOI2016]成绩比较

    [容斥.插值]P3270 [JLOI2016]成绩比较 题目简述 有 \(n+1\) 个人,进行 \(m\) 场考试,第 \(i\) 场考试的可能得分是 \([0,U_i]\) 之间的整数. 假设你是 ...

  10. IIS 修改配置 进行性能优化

    1.修改线程池队列长度和启动模式 2.修改线程池最大工作进程数  --设置为0 目的是根据服务器核数 匹配最佳线程数 3.站点高级设置开启预加载