用C#实现最小二乘法(用OxyPlot绘图)✨
最小二乘法介绍
最小二乘法(Least Squares Method)是一种常见的数学优化技术,广泛应用于数据拟合、回归分析和参数估计等领域。其目标是通过最小化残差平方和来找到一组参数,使得模型预测值与观测值之间的差异最小化。
最小二乘法的原理
线性回归模型将因变量 (y) 与至少一个自变量 (x) 之间的关系建立为:

在 OLS 方法中,我们必须选择一个b1和b0的值,以便将 y 的实际值和拟合值之间的差值的平方和最小化。
平方和的公式如下:

我们可以把它看成是一个关于b1和b0的函数,分别对b1和b0求偏导,然后让偏导等于0,就可以得到最小平方和对应的b1和b0的值。
先说结果,斜率最后推导出来如下所示:

截距推导出来结果如下:

don't worry about that,慢慢推导总是可以弄明白的(不感兴趣可以直接略过):



用C#实现最小二乘法
创建数据点
首先创建想要拟合的数据点:
NDArray? x, y;
x,y为全局变量。
//使用NumSharp创建线性回归的数据集
x = np.arange(0, 10, 0.2);
y = 2 * x + 3 + np.random.normal(0, 3, x.size);
使用到了NumSharp,需要为项目添加NumSharp包:

x = np.arange(0, 10, 0.2);
的意思是x从0增加到10(不包含10),步长为0.2:

np.random.normal(0, 3, x.size);
的意思是生成了一个均值为0,标准差为3,数量与x数组长度相同的正态分布随机数数组。这个数组被用作线性回归数据的噪声。
使用OxyPlot画散点图
OxyPlot是一个用于在.NET应用程序中创建数据可视化图表的开源图表库。它提供了丰富的功能和灵活性,使开发者能够轻松地在其应用程序中集成各种类型的图表,包括折线图、柱状图、饼图等。

添加OxyPlot.WindowsForms包:

将PlotView控件添加到窗体设计器上:

// 初始化散点图数据
var scatterSeries = new ScatterSeries
{
MarkerType = MarkerType.Circle,
MarkerSize = 5,
MarkerFill = OxyColors.Blue
};
表示标志为圆形,标志用蓝色填充,标志的大小为5。
for (int i = 0; i < x.size; i++)
{
scatterSeries.Points.Add(new ScatterPoint(x[i], y[i]));
}
添加数据点。
PlotModel? plotModel;
将plotModel设置为全局变量。
// 创建 PlotModel
plotModel = new PlotModel()
{
Title = "散点图"
};
plotModel.Series.Add(scatterSeries);
// 将 PlotModel 设置到 PlotView
plotView1.Model = plotModel;
这样就成功绘制了散点图,效果如下所示:

使用最小二乘法拟合数据点
double a = 0;
double c = 0;
double x_mean = x?.mean();
double y_mean = y?.mean();
//计算a和c
for(int i = 0; i < x?.size; i++)
{
a += (x[i] - x_mean) * (y?[i] - y_mean);
c += (x[i] - x_mean) * (x[i] - x_mean);
}
//计算斜率和截距
double m = a / c;
double b = y_mean - m * x_mean;
//拟合的直线
var y2 = m * x + b;
套用公式就可以,a表示上面斜率公式的上面那部分,c表示上面斜率公式的下面那部分。
double x_mean = x?.mean();
double y_mean = y?.mean();
计算x与y的平均值。
使用OxyPlot画拟合出来的直线
//画这条直线
var lineSeries = new LineSeries
{
Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },
Color = OxyColors.Red
};
// 创建 PlotModel
plotModel?.Series.Add(lineSeries);
// 为图表添加标题
if (plotModel != null)
{
plotModel.Title = $"拟合的直线 y = {m:0.00}x + {b:0.00}";
}
// 刷新 PlotView
plotView1.InvalidatePlot(true);
Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },
画直线只要添加两个点就好了x?[0], y2[0]表示x和y的第一个点,x?[-1], y2[-1])表示x和y的最后一个点,使用了NumSharp的切片语法。
画出来的效果如下所示:

C#实现的全部代码:
using NumSharp;
using OxyPlot.Series;
using OxyPlot;
namespace OlsRegressionDemoUsingWinform
{
public partial class Form1 : Form
{
NDArray? x, y;
PlotModel? plotModel;
public Form1()
{
InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{
//使用NumSharp创建线性回归的数据集
x = np.arange(0, 10, 0.2);
y = 2 * x + 3 + np.random.normal(0, 3, x.size);
// 初始化散点图数据
var scatterSeries = new ScatterSeries
{
MarkerType = MarkerType.Circle,
MarkerSize = 5,
MarkerFill = OxyColors.Blue
};
for (int i = 0; i < x.size; i++)
{
scatterSeries.Points.Add(new ScatterPoint(x[i], y[i]));
}
// 创建 PlotModel
plotModel = new PlotModel()
{
Title = "散点图"
};
plotModel.Series.Add(scatterSeries);
// 将 PlotModel 设置到 PlotView
plotView1.Model = plotModel;
}
private void button2_Click(object sender, EventArgs e)
{
double a = 0;
double c = 0;
double x_mean = x?.mean();
double y_mean = y?.mean();
//计算a和c
for(int i = 0; i < x?.size; i++)
{
a += (x[i] - x_mean) * (y?[i] - y_mean);
c += (x[i] - x_mean) * (x[i] - x_mean);
}
//计算斜率和截距
double m = a / c;
double b = y_mean - m * x_mean;
//拟合的直线
var y2 = m * x + b;
//画这条直线
var lineSeries = new LineSeries
{
Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },
Color = OxyColors.Red
};
// 创建 PlotModel
plotModel?.Series.Add(lineSeries);
// 为图表添加标题
if (plotModel != null)
{
plotModel.Title = $"拟合的直线 y = {m:0.00}x + {b:0.00}";
}
// 刷新 PlotView
plotView1.InvalidatePlot(true);
}
}
}
用Python实现最小二乘法
import numpy as np
import matplotlib.pyplot as plt
# 用最小二乘法拟合 y = mx + b
# 设置随机数种子以保证结果的可复现性
np.random.seed(0)
# 生成一个在[0, 10]区间内均匀分布的100个数作为x
x = np.linspace(0, 10, 100)
# 生成y,y = 2x + 噪声,其中噪声是[0, 10)之间的随机整数
y = 2 * x + 5 + np.random.randint(0, 10, size=100)
# 计算x和y的均值
x_mean = np.mean(x)
y_mean = np.mean(y)
a = 0
c = 0
for i in range(x.shape[0]):
a += (x[i] - x_mean) * (y[i] - y_mean)
c += (x[i] - x_mean) ** 2
# 计算斜率和截距
m = a / c
b = y_mean - m * x_mean
# 画这条直线
y2 = m * x + b
plt.plot(x, y2, color='red')
# 画数据点
plt.scatter(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title(f'y = {m:.2f}x + {b:.2f}')
plt.show()
运行效果如下所示:

总结
本文向大家介绍了最小二乘法以及公式推导的过程,并使用C#与Python进行实现。重点介绍了C#中是如何实现的,同时介绍了在C#中如何使用OxyPlot绘图。希望对你有所帮助。
参考
1、Understanding Ordinary Least Squares (OLS) Regression | Built In
2、Machine Learning Series-Linear Regression Ordinary Least Square Method - YouTube
用C#实现最小二乘法(用OxyPlot绘图)✨的更多相关文章
- 这些.NET开源项目你知道吗?让.NET开源来得更加猛烈些吧
注意:有网友提出部分项目停止更新的事情,这个问题我特意注意过,很多都是小功能组件,功能稳定,没有bug,没更新是正常的.够用就行了.其次技术支持的事情,对开源免费来说,不能太强求,这里发布的都是小功能 ...
- C#.NET开源项目、机器学习、商务智能
所以原谅我,不能把所有的都发上来,太杂了,反而不好. 1..NET时间周期处理组件 这个组件很小,主要是对时间日期,特别是处理时间间隔以及时间范围非常方便.虽然.NET自带了时间日期的部分功能,但可能 ...
- 机器学习:R语言中如何使用最小二乘法
详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同 ...
- 机器学习:Python中如何使用最小二乘法
之所以说"使用"而不是"实现",是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了.随着对技术的逐渐掌握及积累,当类库中的算法已经 ...
- 机器学习:scipy和sklearn中普通最小二乘法与多项式回归的使用对
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所 ...
- Mathematica/偏导数/最小二乘法(线性回归)
a = / a //输出的还是2/123 N[a] //输出的就是小数点 N[a,] //保留三位小数点 Clear[a] Solve[== x^- , x] //结果-3 和 3 Plot[Sin[ ...
- 最小二乘法 及python 实现
参考 最小二乘法小结 机器学习:Python 中如何使用最小二乘法 什么是” 最小二乘法” 呢 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳 ...
- 转悠望南山 Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线 ...
- Python闲谈(二)聊聊最小二乘法以及leastsq函数
1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线→一 ...
- C#使用Oxyplot绘制监控界面
C#中可选的绘图工具有很多,除了Oxyplot还有DynamicDataDisplay(已经改名为InteractiveDataDisplay)等等.不过由于笔者这里存在一些环境上的特殊要求,.Net ...
随机推荐
- MySQL InnoDB加锁规则分析
1. 基础知识回顾 1.索引的有序性,索引本身就是有序的 2.InnoDB中间隙锁的唯一目的是防止其他事务插入间隙.间隙锁可以共存.一个事务取得的间隙锁并不会阻止另一个事务取得同一间隙上的间隙锁.共 ...
- bash shell笔记整理——date命令
date命令初步了解 简单来说date的主要作用大多数用于以给定的格式来显示时间. 在后期我们写一些脚本当中也会使用到,比如说按照日期来给文件备份打包等. 下面我们来看看帮助信息: [root@ngi ...
- 用CloudDrive将阿里云、天翼云、115挂载为电脑本地硬盘
用CloudDrive将阿里云.天翼云.115挂载为电脑本地硬盘 写在前面 它可以把各大在线网盘,直接变成电脑本地硬盘,俗称"网盘挂载".这在一定程度上,确实能缓解存储紧张问题,瞬 ...
- buuctf 加固题 babypython WriteUp
原题wp参考链接:https://www.cnblogs.com/karsa/p/13529769.html 这是CISCN2021 总决赛的题,解题思路是软链接zip 读取文件,然后伪造admin的 ...
- CSS3学习笔记-动画
CSS3中提供了许多有趣和实用的动画效果,可以使页面更加生动有趣,下面介绍一些常用的动画效果. @keyframes规则 使用@keyframes规则可以创建一系列动画帧,并定义它们的状态和样式,在页 ...
- vue缓存数据
1,本地缓存(一直存在) localStorage.setItem('key', 'value'); const data = localStorage.getItem('key'); 2,会话缓存( ...
- C++篇:第十二章_文件及IO_知识点大全
C++篇为本人学C++时所做笔记(特别是疑难杂点),全是硬货,虽然看着枯燥但会让你收益颇丰,可用作学习C++的一大利器 十二.文件及IO 当在输入输出流中使用控制符进行格式控制时,需在程序中加入头文件 ...
- 跟着B站UP主小姐姐去华为坂田基地采访扫地僧
摘要:谁说程序员就只能写代码呢!华为扫地僧的才艺是完全可以solo出道的那种. 忍不住想要和你们分享下我9月份的快乐呀!Mark下最近完成的一件超了不起的事情!我去你们口中别人家的公司-华为啦!这次采 ...
- 华为云数据库GaussDB(for openGauss):初次见面,认识一下
摘要:本文从总体架构.主打场景.关键技术特性等方面进行介绍GaussDB(for openGauss). 1.背景介绍 3月16日,在华为云主办的GaussDB(for openGauss)系列技术第 ...
- 只需2步,教你在Vue中设置登录验证拦截
摘要:两步教你在Vue中设置登录验证拦截! 本文分享自华为云社区<两步教你在Vue中设置登录验证拦截!>,作者: 灰小猿 . 今天在做vue和springboot交互的一个项目的时候,想要 ...