【转载】 深度学习——Xavier初始化方法
版权声明:本文为CSDN博主「shuzfan」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/shuzfan/article/details/51338178
=================================
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。
为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。
基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件。
文章先假设的是线性激活函数,而且满足0点处导数为1,即

现在我们先来分析一层卷积:

其中ni表示输入个数。
根据概率统计知识我们有下面的方差公式:

特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为:

进一步假设输入x和权重w独立同分布,则有:

于是,为了保证输入与输出方差一致,则应该有:

对于一个多层的网络,某一层的方差可以用累积的形式表达:

特别的,反向传播计算梯度时同样具有类似的形式:

综上,为了保证前向传播和反向传播时每一层的方差一致,应满足:

但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,最终我们的权重方差应满足:
———————————————————————————————————————

———————————————————————————————————————
学过概率统计的都知道 [a,b] 间的均匀分布的方差为:

因此,Xavier初始化的实现就是下面的均匀分布:
——————————————————————————————————————————

——————————————————————————————————————————
下面,我们来看一下caffe中具体是怎样实现的,代码位于include/caffe/filler.hpp文件中。
template <typename Dtype>
class XavierFiller : public Filler<Dtype> {
public:
explicit XavierFiller(const FillerParameter& param)
: Filler<Dtype>(param) {}
virtual void Fill(Blob<Dtype>* blob) {
CHECK(blob->count());
int fan_in = blob->count() / blob->num();
int fan_out = blob->count() / blob->channels();
Dtype n = fan_in; // default to fan_in
if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_AVERAGE) {
n = (fan_in + fan_out) / Dtype(2);
} else if (this->filler_param_.variance_norm() ==
FillerParameter_VarianceNorm_FAN_OUT) {
n = fan_out;
}
Dtype scale = sqrt(Dtype(3) / n);
caffe_rng_uniform<Dtype>(blob->count(), -scale, scale,
blob->mutable_cpu_data());
CHECK_EQ(this->filler_param_.sparse(), -1)
<< "Sparsity not supported by this Filler.";
}
};
由上面可以看出,caffe的Xavier实现有三种选择
(1) 默认情况,方差只考虑输入个数:

(2) FillerParameter_VarianceNorm_FAN_OUT,方差只考虑输出个数:

(3) FillerParameter_VarianceNorm_AVERAGE,方差同时考虑输入和输出个数:

之所以默认只考虑输入,我个人觉得是因为前向信息的传播更重要一些
————————————————
【转载】 深度学习——Xavier初始化方法的更多相关文章
- 深度学习——Xavier初始化方法
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...
- 深度学习----Xavier初始化方法
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...
- 深度学习的Xavier初始化方法
在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...
- [深度学习] 权重初始化--Weight Initialization
深度学习中的weight initialization对模型收敛速度和模型质量有重要影响! 在ReLU activation function中推荐使用Xavier Initialization的变种 ...
- 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks
本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...
- go微服务框架go-micro深度学习(四) rpc方法调用过程详解
上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地 ...
- 深度学习Momentum(动量方法)
转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲 ...
- 深度学习中Xavier初始化
"Xavier"初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training ...
- [转载]Deep Learning(深度学习)学习笔记整理
转载自:http://blog.csdn.net/zouxy09/article/details/8775360 感谢原作者:zouxy09@qq.com 八.Deep learning训练过程 8. ...
- 转载-聊一聊深度学习的activation function
目录 1. 背景 2. 深度学习中常见的激活函数 2.1 Sigmoid函数 2.2 tanh函数 2.3 ReLU函数 2.4 Leaky ReLu函数 2.5 ELU(Exponential Li ...
随机推荐
- sql去重常用的基本方法
1.存在两条完全相同的纪录 select distinct * from table(表名) where (条件) 2.存在部分字段相同的纪录(有主键id即唯一键) 如果是这种情况的话用disti ...
- JavaScript通过递归实现深拷贝
思路 首先是用Object.prototype.toString.call(obj)来得到传入的值的类型,如果是几个基本类型,则直接返回值就可以了 如果是引用类型,则通过深拷贝函数递归进行再次拷贝. ...
- UE 5 NavMesh 烘培 逻辑流程
关于UE引擎层面的东西: 在向场景重拖入一个NavMeshBoundsVolume时(或者修改时). 会调用 void UNavigationSystemV1::PerformNavigation ...
- 容器镜像安全:安全漏洞扫描神器Trivy
目录 一.系统环境 二.前言 三.Trivy简介 四.Trivy漏洞扫描原理 五.利用trivy检测容器镜像的安全性 六.总结 一.系统环境 本文主要基于Docker version 20.10.14 ...
- Linux内存不够了?看看如何开启虚拟内存增加内存使用量
1.为什么要使用虚拟内存 当我们没有多余的钱去购买大内存的云服务器时,但是当前服务器里面的软件和程序运行的比较多导致内存不够用了.这个时候可以通过增加虚拟内存来扩大内存容量.但是在启用虚拟内存时,需要 ...
- Linux 应用案例开发手册——基于Zynq-7010/20工业开发板
目 录 1 开发案例说明 4 2 Linux 常用开发案例 4 2.1 tl_led_flash 案例 4 2.2 tl_key_test 案例 7 2.3 tl_can_echo 案例 11 2.4 ...
- Java权限认证框架比较
认证.授权.鉴权和权限控制 定义 英文 实现方式 认证 确认声明者的身份 identification 根据声明者独特的识别信息 授权 获取用户的委派权限 authorization 颁发一个授信媒介 ...
- mybatis log4j打印sql语句
依赖 <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</a ...
- 基于Redis在定时任务里判断其他定时任务是否已经正常执行完的方案
执行的定时任务是基于其他定时任务计算得到的结果基础上做操作的,那么如何来确定其他存在数据依赖的定时任务已经执行完成呢? 在分布式环境里,可通过集群的redis来解决这个问题: 即,在跑批任务开始时,将 ...
- 洛谷P1004
洛谷P1004方格取数 题目大意 本题简要意思就是一个人从一个数字矩阵的左上角走到右下角,只能向下和向右走,拿完的数对应位置变成0,并且这个人要走两次,需要计算两次所拿数的最大值 Train of t ...