本文分享自华为云社区《Flink SQL性能优化实践》 ,作者:超梦。

在大数据处理领域,Apache Flink以其流处理和批处理一体化的能力,成为许多企业的首选。然而,随着数据量的增长,性能优化变得至关重要。本文将深入浅出地探讨Flink SQL的常见性能问题、调优方法、易错点及调优技巧,并提供代码示例。、

1. 常见性能问题

1.1 数据源读取效率低

  • 并行度不足:默认的并行度可能无法充分利用硬件资源。
-- 设置并行度
SET 'parallelism.default' = 16;

1.2 状态管理不当

  • 状态过大:过多的状态可能导致内存溢出或GC压力。
  • 无状态化处理:尽量避免在非必须的情况下存储状态。

1.3 窗口操作效率低

  • 窗口大小不合适:过大或过小的窗口可能导致计算延迟或资源浪费。

2. 调优方法

2.1 优化数据源读取

  • 利用分区读取:通过PARTITION BY语句进行分区,提高并行度。
SELECT * FROM source_table PARTITION BY key;

2.2 状态管理优化

  • 使用 RocksDB State Backend:RocksDB提供了更高效的状态存储。
-- 设置RocksDB状态后端
SET 'state.backend' = 'rocksdb';
配置状态清理策略:定期清理无用状态。
-- 清理超时状态
SET 'state.backend.rocksdb.time-basedCleaningPolicy.enable' = true;
SET 'state.backend.rocksdb.time-basedCleaningPolicy.time-interval' = '30m';

2.3 窗口优化

  • 使用滑动窗口减少延迟:适合实时性要求高的场景。
SELECT * FROM stream WINDOW TUMBLING (SIZE 5 MINUTES, ADVANCE BY 1 MINUTE);

3. 易错点与调优技巧

3.1 错误的数据类型转换

  • 避免不必要的类型转换:类型转换会增加计算开销。

3.2 不合理的JOIN操作

  • 优化JOIN条件:尽量减少全表JOIN,使用索引或预处理数据。

3.3 使用广播JOIN

  • 对于小表,考虑使用Broadcast JOIN:减少网络传输。
-- 使用Broadcast JOIN
SELECT * FROM table1 JOIN table2 WITH BROADCAST ON table1.key = table2.key;

3.4 注意SQL查询复杂度

  • 避免过于复杂的SQL查询:拆分为多个简单查询,降低计算复杂度。

4. 并发控制与资源调度

4.1 并发任务冲突

  • 合理设置并发度:避免任务间的资源竞争。
-- 设置全局并发度
SET 'jobmanager.memory.process.size' = '4g';

4.2 资源调度优化

  • 使用动态资源分配:根据任务负载自动调整资源。
-- 启用动态资源分配
SET 'pipeline.parallelism.stepping' = true;

5. 源码级别的优化

5.1 自定义源码实现

  • 优化自定义Source和Sink:减少不必要的序列化和反序列化。

5.2 执行计划分析

  • 查看执行计划:理解Flink如何执行SQL,找出性能瓶颈。
EXPLAIN SELECT * FROM table;

6. 异常处理与监控

6.1 异常检测与恢复

  • 启用检查点:确保容错性和数据一致性。
-- 启用检查点
SET 'state.checkpoints.enabled' = true;

6.2 监控与报警

  • 集成监控工具:如Prometheus和Grafana,实时监控任务性能。
  • 设置报警阈值:及时发现并处理问题。

7. 数据预处理与清洗

7.1 数据清洗

  • 预处理数据:过滤无效数据,减少计算负担。

7.2 数据去重

  • 使用DISTINCT关键字:避免重复计算。
SELECT DISTINCT column1, column2 FROM table;

8. 高级特性利用

8.1 容器化部署

  • 使用Kubernetes或YARN:灵活扩展,资源利用率高。

8.2 SQL与UDF结合

  • 自定义用户定义函数(UDF) :解决特定业务需求,提高处理效率。
CREATE FUNCTION my_udf AS 'com.example.MyUDF';
SELECT my_udf(column) FROM table;

9. 数据压缩与序列化

9.1 选择合适的序列化方式

  • 使用高效的序列化框架:如Kryo,减少数据传输和存储的开销。
-- 设置Kryo序列化
SET 'execution.runtime.serialization' = 'kryo';

9.2 数据压缩

  • 启用数据压缩:减小网络传输和磁盘占用。
-- 启用压缩
SET 'execution.network.tcp.compress' = true;

10. 任务并行化与数据分区

10.1 平行执行任务

  • 合理划分任务并行度:确保任务均匀分布。

10.2 数据分区策略

  • 使用适当的分区策略:如ROUND_ROBIN、HASH等,提高并行计算效率。
SELECT * FROM table PARTITION BY key;

11. 网络传输优化

11.1 优化缓冲区管理

  • 调整缓冲区大小和数量:平衡内存使用和网络延迟。
-- 设置缓冲区大小
SET 'taskmanager.network.memory.fraction' = 0.1;
-- 设置缓冲区数量
SET 'taskmanager.network.numberOfBuffers' = 1024;

11.2 减少网络传输

  • 利用水印处理乱序事件:避免不必要的数据传输。

12. 系统配置调优

12.1 优化JVM参数

  • 调整JVM堆内存和GC策略:避免频繁的垃圾回收。
# 示例JVM启动参数
-Djava.heap.size=10g -XX:+UseG1GC -XX:MaxGCPauseMillis=200

12.2 监控系统资源

  • 监控CPU、内存和磁盘使用情况:及时发现问题。

13. 数据倾斜处理

13.1 分布式哈希倾斜

  • 使用定制的哈希函数:避免数据集中在少数节点。

13.2 倾斜数据预处理

  • 均衡数据分布:通过聚合、分区等操作减轻热点。
SELECT key, COUNT(*) FROM table GROUP BY key;

14. 任务调度策略

14.1 优先级调度

  • 设置任务优先级:确保关键任务优先执行。

14.2 动态资源调整

  • 根据任务负载动态调整资源:避免资源浪费。

总结

上面介绍了Apache Flink SQL的性能优化实践,涵盖了数据源读取、状态管理、窗口操作、并行度控制、资源调度、并发控制、源码优化、异常处理、数据预处理、数据压缩、任务并行化、网络传输、系统配置、数据倾斜处理、任务调度策略、代码组织、用户交互以及社区支持等多个方面。通过实例代码和调优建议,阐述了如何解决常见性能问题,提升系统效率,同时强调了持续监控、反馈和社区学习的重要性。在实际应用中,综合运用这些方法,能够有效地优化Flink SQL的性能。

点击关注,第一时间了解华为云新鲜技术~

14个Flink SQL性能优化实践分享的更多相关文章

  1. 兄弟连教育分享-SQL性能优化十条经验

    1.查询的模糊匹配 尽量避免在一个复杂查询里面使用 LIKE '%parm1%'——红色标识位置的百分号会导致相关列的索引无法使用,最好不要用. 兄弟连教育分享-SQL性能优化十条经验 解决办法: 其 ...

  2. ORACLE数据库学习之SQL性能优化详解

                                                                                    Oracle  sql 性能优化调整 ...

  3. 百度APP移动端网络深度优化实践分享(一):DNS优化篇

    本文由百度技术团队“蔡锐”原创发表于“百度App技术”公众号,原题为<百度App网络深度优化系列<一>DNS优化>,感谢原作者的无私分享. 一.前言 网络优化是客户端几大技术方 ...

  4. Oracle SQL性能优化技巧大总结

    http://wenku.baidu.com/link?url=liS0_3fAyX2uXF5MAEQxMOj3YIY4UCcQM4gPfPzHfFcHBXuJTE8rANrwu6GXwdzbmvdV ...

  5. Hadoop YARN:调度性能优化实践(转)

    https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html 文章 ...

  6. etcd 性能优化实践

    https://mp.weixin.qq.com/s/lD2b-DZyvRJ3qWqmlvHpxg 从零开始入门 K8s | etcd 性能优化实践 原创 陈星宇 阿里巴巴云原生 2019-12-16 ...

  7. 直播推流端弱网优化策略 | 直播 SDK 性能优化实践

    弱网优化的场景 网络直播行业经过一年多的快速发展,衍生出了各种各样的玩法.最早的网络直播是主播坐在 PC 前,安装好专业的直播设备(如摄像头和麦克风),然后才能开始直播.后来随着手机性能的提升和直播技 ...

  8. 手游录屏直播技术详解 | 直播 SDK 性能优化实践

    在上期<直播推流端弱网优化策略 >中,我们介绍了直播推流端是如何优化的.本期,将介绍手游直播中录屏的实现方式. 直播经过一年左右的快速发展,衍生出越来越丰富的业务形式,也覆盖越来越广的应用 ...

  9. SQL性能优化案例分析

    这段时间做一个SQL性能优化的案例分析, 整理了一下过往的案例,发现一个比较有意思的,拿出来给大家分享. 这个项目是我在项目开展2期的时候才加入的, 之前一期是个金融内部信息门户, 里面有个功能是收集 ...

  10. Lazy<T>在Entity Framework中的性能优化实践

    Lazy<T>在Entity Framework中的性能优化实践(附源码) 2013-10-27 18:12 by JustRun, 328 阅读, 4 评论, 收藏, 编辑 在使用EF的 ...

随机推荐

  1. Ubuntu部署Django三:编写相关配置文件及启动服务

    1. uwsgi 1.1 项目结构如下,你要知道 uwsgi.ini 放在什么位置 projectName |-- app |-- projectName |-- -- wsgi.py |-- -- ...

  2. GPT-3的训练一次成本约为140万美元

    训练GPT模型的成本非常高昂,因为它需要大量的计算资源和时间.具体来说,GPT-3的训练成本约为140万美元,对于一些更大的LLM模型,训练成本介于200万美元至1200万美元之间.此外,OpenAI ...

  3. 常用注解使用总结系列: @Order 注解

    @Order 注解 @Order注解主要用来控制配置类的加载顺序示例代码: package com.runlion.tms.admin.constant; public class AService ...

  4. 搞定了 6 种分布式ID,分库分表哪个适合做主键?

    大家好,我是小富- 本文是<ShardingSphere5.x分库分表原理与实战>系列的第七篇,目前系列的前几篇制作成了PDF,需要的可以在文末获取下载方式,持续更新中.今天咱们继续一起来 ...

  5. Redis介绍、使用、数据结构和集群模式总结

    Redis(Remote Dictionary Server)是一个开源的,基于内存的数据结构存储系统,它支持多种数据结构,如字符串(String).列表(List).集合(Set).有序集合(Sor ...

  6. MD5前端vue加密

    Vue 前端md5加密用户注册时将加密后的密码发送给后端存储当登陆的时候,再将加密后的密码和数据库中加密的密码相匹配.npm: https://www.npmjs.com/package/crypto ...

  7. 红日安全vulnstack (一)

    网络拓扑图 靶机参考文章 CS/MSF派发shell 环境搭建 IP搭建教程 本机双网卡 65网段和83网段是自己本机电脑(虚拟机)中的网卡, 靶机外网的IP需要借助我们这两个网段之一出网 Kali ...

  8. stmp 501 5.1.3 Invalid Address 无效的邮件地址

    stmp 501 5.1.3 Invalid Address 无效的邮件地址 一般来说就是要确认邮箱地址是不是对的 还有一种可能的情况是使用的邮件服务器仅支持对内邮件,没有对外邮件的发送权限

  9. 安装Visual Studio 2010 教程

    1.下载软件 方法一:关注[ 火耳软件安装 ]公众号获取软件,里面还有很多类型的其他软件 或者: 方法二:我的分享链接:https://pan.baidu.com/s/1_Ow2YR-kbnbSc6o ...

  10. 力扣119(java)-杨辉三角Ⅱ(简单)

    题目: 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行. 在「杨辉三角」中,每个数是它左上方和右上方的数的和. 示例 1: 输入: rowIndex = 3输出: [1 ...