Superpixel Based RGB-D Image Segmentation Using Markov Random Field——阅读笔记
1、基本信息
题目:使用马尔科夫场实现基于超像素的RGB-D图像分割;
作者所属:Ferdowsi University of Mashhad(Iron)
发表:2015 International Symposium on Artificial Intelligence and Signal Processing (AISP)
关键词:微软Kinect传感器;RGB-D图像分割;MRF;法向量
2、摘要
针对问题:能量最小化;
使用场景:室内场景标签问题(分割、分类等);
主要数据:微软Kinect获得的带有距离信息的图像数据;
主要方法:基于色彩和距离变化对原图进行超像素预处理,使用图像模型处理超像素块,并用MRF推断得到最后的标签结果;
主要结果:NYU的数据,效果更好;
可取与差异:图像模型如何套用在预处理结果的,以及MRF的带入?SAR图像可以得到距离信息,但是否有必要?效率和质量上有没有可取之处?
3、Introduction
--distance,距离因素相比其他rgb等信息,收到的干扰要小/少一点;同样也是因为运用了距离信息进行了超像素预处理(当然也用了色彩的信息),比其他效果要好;
--本文把分割问题看作是一个随机优化问题(另一种常见的看法是该问题是一个确定的优化问题);
--随机优化又有两种模型:图像模型和其他非图像的模型(用参数或非参的方法得到后延概率);本文使用著名的后验概率图像模型——MRF——来最小化势能量函数,以得到每个超像素的全局的最优标签;
4、Related works
略。(与自己研究相关的少,主要是3D图像的处理问题,针对性太强,适用面窄,又需要再看吧)
5、MRF
--labeling问题:最大化后验概率p(L|f),在f特征下的L的最大化——》利用贝叶斯公式,得到=p(f|L)*P(L)/P(f),P(f)是个常数,分析中可以忽略掉;P(f|L)等于是似然函数,P(L)用gibbs分布等于到u能量函数,再变为势函数——》所以,标签问题由求标签的最大后验概率,变为求最小势能函数之和(或最小能量函数,这就是个名字)——》若后验概率假设是高斯分布的,得到式子后,v变为potts模型(似乎是本文采用的模型)
--这里,最后的势函数是所谓的order2势函数,反应了图中相邻标签的关系;之前的势函数反应的是单一像素/超像素在图中的关系。(?)
6、三边的深度去噪(?)
提出了一种针对性的去噪方法,但没怎么看懂——不过自己的研究中,因为针对的是高分辨率的图像,且强调速度的实现,这里跳过。
7、Proposed Method
7.1 超像素提取方法
--是很重要的一步,影响最终结果很多(同);
--针对labcie彩色空间的canny边缘检测方法和针对深度(距离)信息的相邻像素法向量的cos夹角方法;
--也就是说,文中是用这两种边缘检测方法得到边缘,然后将得到的分割后的块作为下一步处理的超像素(也就是说,大小形状不定);(这里倒是提供了一种超像素的思路,由边缘检测等其他方法得到,自己定义超像素亦可,只要服务于我!!)
7.2 能量函数(?)
--这里没有太懂:order3势函数也有了,表示两个相邻像素的order2势函数的集合(?);
7.3 最小化(势函数)方法
--已经有很多(成熟的)方法:ICM,Graph Cut,梯度下降,a-expansion, a-beta-swap and message passing based method;
--本文采用的是一种MRF方法,具体是把原始问题分解为sub(亚)问题——变成主从系列的问题,仆一个一个解决,让主不断更新到最后的结果;起了个算法名字:快速原始对偶算法(Fast Primal Dual Algorithm);
8、实验结果
--具体的就不多说了,毕竟不是很一样,谈谈可取之处;
--数量:30个场景/图片;
--评判方法:与the Hoover method对比(公认的一些方法),以及其他成熟方法;三个指标(correct detection,noise instances,missed instances)作图展示!
9、Conclusion
--利用几何信息(这里特指深度/距离信息)增强分割结果;
--具体实现的方法是利用MRF原理,把信息“加载”到能量函数中去;
--在预处理阶段(得到超像素),利用了彩色边缘和几何(深度)边缘来做检测的;
--适用于high level图像处理问题,以及机器人导航问题(用kniect);
10、Future works
--更好的分割结果;
--现有或前次分割结果的利用;每次迭代后标签的反馈信息;
11、参考文献
[9] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi,Pascal Fua, Sabine Süsstrunk: S L IC Superpixels Compared to Stateof-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach.Intell. 34(11): 2274-2282 (2012).
[31] Komodakis, N., Paragios, N., Tziritas, G., "MRF Energy Minimization and Beyond via Dual Decomposition," Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.33, no.3,pp.531,552, March 2011.
[32] Chaohui Wang, Nikos Komodakis, Nikos Paragios, "Markov Random Field modeling, inference & learning in computer vision ; image understanding", A survey, Computer Vision and Image Understanding, Volume 117, Issue 11, Pages 1610-1627, ISSN 1077-3142, 2013.94
12、个人总结
--获得超像素的方法,不死板,对超像素定义的理解更深入;
--运用MRF的能量函数的变化,来实现所谓的“基于”;
--没有讲具体怎么实现的问题由大化小的,对超像素块的操纵还是不灵光...
Superpixel Based RGB-D Image Segmentation Using Markov Random Field——阅读笔记的更多相关文章
- 马尔科夫随机场(Markov Random Field)
马尔可夫随机场(Markov Random Field),它包含两层意思:一是什么是马尔可夫,二是什么是随机场. 马尔可夫过程可以理解为其当前的状态只与上一刻有关而与以前的是没有关系的.X(t+1)= ...
- Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging 阅读笔记
Introduction 主流的基于LSM树的KV存储都在两方面进行权衡,一方面是写入更新的开销,另一方面是查询和存储空间的开销.但它们都不是最优的,问题在于这些存储系统在LSM树的每一个level上 ...
- Markov Random Fields
We have seen that directed graphical models specify a factorization of the joint distribution over a ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...
- Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...
- 论文阅读笔记二十四:Rich feature hierarchies for accurate object detection and semantic segmentation Tech report(R-CNN CVPR2014)
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进 ...
- 论文阅读笔记二十二:End-to-End Instance Segmentation with Recurrent Attention(CVPR2017)
论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘 ...
- 论文阅读笔记十七:RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation(CVPR2017)
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-seg ...
随机推荐
- ArcGIS Server 开发之鹰眼地图的实现
鹰眼简单点说就是地图的联动,鹰眼的全称是OverviewMap,在ERSI提供的API包中,在dijit中进行类的调用.查了很多的资料,总结一下: 具体的代码: <!DOCTYPE html&g ...
- JavaScript中使用typeof运算符需要注意的几个坑
typeof是一个运算符,它对操作数返回的结果是一个字符串,有6种(只针对ES,不包含HOST环境对象). 1.'undefined'2.'boolean'3.'string'4.'number'5. ...
- ABAP中的Table Control编程
SAP中,Table Control是在Screen中用的最广泛的控件之一了,可以实现对多行数据的编辑. 简单来说,Table Control是一组屏幕元素在Screen上的重 ...
- 劳动节脑洞大开!利用Debug API 获取 加壳客户端的MD5值
系统 : Windows xp 程序 : 某游戏客户端 程序下载地址 :不提供 要求 : 远程注入 & 获取MD5值 使用工具 : vc++6.0 & OD 案例说明: 该游戏客户端对 ...
- What is research (1)
This abstract tells me a lot of stories about itself. Here I want to discuss two stories about it. I ...
- Sharepoint学习笔记—习题系列--70-576习题解析 -(Q84-Q87)
Question 84You are designing a Web Part for SharePoint 2010 that must be able to be used on any sit ...
- Eclipse的自动排版设置(format)
Java排版: 主要是在文件保存时自动触发排版等规则,省掉反复操作快捷键 Ctrl+Shift+F 的步骤.在 eclipse 中选择 Window-> Preferences- ...
- 深入.net(.net平台)
S2A技能点: 1.学会“自己”进行大量复杂数据的管理(数据类型.集合.xml.文件) 2.学会“优化”代码编写--- 复用.可扩展.可替换(封装.继承.多态) 什么是“跨平台”---- 您的应用程序 ...
- XML解析之SAX详解
XML解析之SAX详解 本文属于作者原创 http://www.cnblogs.com/ldnh/ XML解析的五个步骤 1.打开文档 (void)parserDidStartDocument:(NS ...
- (视频) 《快速创建网站》 3.2 WordPress多站点及Azure在线代码编辑器 - 扔掉你的ftp工具吧,修改代码全部云端搞定
本文是<快速创建网站>系列的第6篇,如果你还没有看过之前的内容,建议你点击以下目录中的章节先阅读其他内容再回到本文. 访问本系列目录,请点击:http://devopshub.cn/tag ...