Description

在一个N个节点的无向图(没有自环、重边)上,每个点都有一个符号,
可能是数字,也可能是加号、减号、乘号、除号、小括号。你要在这个图上数
一数,有多少种走恰好K个节点的方法,使得路过的符号串起来能够得到一
个算数表达式。路径的起点和终点可以任意选择。
所谓算数表达式,就是由运算符连接起来的一系列数字。括号可以插入在
表达式中以表明运算顺序。
注意,你要处理各种情况,比如数字不能有多余的前导0,减号只有前面
没有运算符或数字的时候才可以当成负号,括号可以任意添加(但不能有空括
号),0可以做除数(我们只考虑文法而不考虑语意),加号不能当正号。
例如,下面的是合法的表达式:
-0/0
((0)+(((2*3+4)+(-5)+7))+(-(2*3)*6))
而下面的不是合法的表达式:
001+0
1+2(2)
3+-3
--1
+1
()
 

Input

第一行三个整数N,M,K,表示点的数量,边的数量和走的节点数。

第二行一个字符串,表示每个点的符号。
接下来M行,每行两个数,表示一条边连的两个点的编号。
1≤N≤20,0≤M≤N×(N-1)/2,0≤K≤30
 

Output

输出一行一个整数,表示走的方法数。这个数可能比较大,你只需要输出

它模1000000007的余数即可。
 

Sample Input

6 10 3
)(1*+0
1 2
1 3
1 4
2 3
3 4
2 5
3 5
3 6
4 6
5 6

Sample Output

10
//一共有10条路径,构成的表达式依次是101, (1), 1+1, 1+0, 1*1, 1*0, 0+0,
0+1, 0*0, 0*1
 
就是一道简单的DP辣(好容易写错的呢)。(WA了5发要是考场懵逼了就跪了)
设f[x][k][c][S]表示当前在节点x,已经走了k步,“(”-“)”数量为c,有没有前缀0的路径数量。
转移挺复杂且容易写错的,详见code(也可以用来对拍)。
 
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int mod=1000000007;
int f[25][35][35][2];//f[x][t][v] '(' - ')'
int n,k,m,e[25][25];
char s[25];
int iscal(char c) {return c=='+'||c=='-'||c=='*'||c=='/';}
int dp(int x,int t,int c,int pre) {
if(t>=k) return (!c)&&!iscal(s[x]);
int& ans=f[x][t][c][pre];
if(ans>=0) return ans;
ans=0;
rep(i,1,n) if(e[x][i]) {
if(s[i]>='0'&&s[i]<='9') {
if(s[x]>='0'&&s[x]<='9') {
if(!pre) (ans+=dp(i,t+1,c,0))%=mod;
}
else if(iscal(s[x])||s[x]=='(') (ans+=dp(i,t+1,c,s[i]=='0'))%=mod;
}
else if(s[i]=='('||s[i]==')') {
if(s[i]=='('&&(s[x]=='('||iscal(s[x]))) (ans+=dp(i,t+1,c+1,0))%=mod;
else if(s[i]==')'&&c&&(isdigit(s[x])||s[x]==')')) (ans+=dp(i,t+1,c-1,0))%=mod;
}
else {
if(s[x]>='0'&&s[x]<='9') (ans+=dp(i,t+1,c,s[i]=='0'))%=mod;
if(s[x]==')') (ans+=dp(i,t+1,c,0))%=mod;
if(s[x]=='('&&s[i]=='-') (ans+=dp(i,t+1,c,0))%=mod;
}
}
return ans;
}
int main() {
memset(f,-1,sizeof(f));
n=read();m=read();k=read();
scanf("%s",s+1);
rep(i,1,m) {
int x=read(),y=read();
e[x][y]=e[y][x]=1;
}
int ans=0;
rep(i,1,n) {
if(s[i]=='(') (ans+=dp(i,1,1,0))%=mod;
if(s[i]=='-') (ans+=dp(i,1,0,0))%=mod;
if(s[i]>='1'&&s[i]<='9') (ans+=dp(i,1,0,0))%=mod;
if(s[i]=='0') (ans+=dp(i,1,0,1))%=mod;
}
printf("%d\n",ans);
return 0;
}

  

BZOJ4531: [Bjoi2014]路径的更多相关文章

  1. BZOJ 4531: [Bjoi2014]路径

    Description 一个无向图,每个节点有一个字符,问形成长度为k的的合法表达式的方案数. Sol DP. \(f[i][o][p][0/1]\) 表示走 \(i\) 步,到 \(o\) ,有 \ ...

  2. BZOJ4531 && BJOI2014 trace

    #include<cstdio> #include<cctype> using namespace std ; struct state { int len ; int p ; ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  5. BZOJ_4530_[Bjoi2014]大融合_LCT

    BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个 ...

  6. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

  7. LOJ#2230. 「BJOI2014」大融合

    LOJ#2230. 「BJOI2014」大融合 题目描述 小强要在$N$个孤立的星球上建立起一套通信系统.这套通信系统就是连接$N$个点的一个树.这个树的边是一条一条添加上去的. 在某个时刻,一条边的 ...

  8. 洛谷P4219 - [BJOI2014]大融合

    Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...

  9. [BJOI2014]大融合(Link Cut Tree)

    [BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知 ...

随机推荐

  1. Delphi中弹出提示框的四种方法

    参考:http://blog.itpub.net/8432156/viewspace-924843/ 更为详细的内容请参见:http://blog.csdn.net/akof1314/article/ ...

  2. 在SSIS包中的事务处理

    在处理SSIS包的数据ETL操作过程中,我们经常遇到的一个问题就是一系列步骤在运行的过程中,如果中间的一个步骤失败了,那么我们就需要清理前面已经运行过的步骤所产生的数据或者结果,这往往是一个很头疼的过 ...

  3. scala中的抽象类

    scala中也有和java,c#类似的抽象类,抽象类会有部分实现,也有没有实现的方法定义.抽象类最大的特征是不能直接实例化.下面我们看个例子. abstract class Animal { def ...

  4. OGG异常处理

    ALTER REPLICAT LCMA1REP,BEGIN NOW 从最新的trail文件开始读取 ALTER REPLICAT LCMA1REP,EXTSEQNO 191(对应的 trail的序号 ...

  5. Python3 基本数据类型注意事项

    Python3 基本数据类型 教程转自菜鸟教程:http://www.runoob.com/python3/python3-data-type.html Python中的变量不需要声明.每个变量在使用 ...

  6. 实现Activity刷新 (转)

    目前刷新Acitivity,只想到几种方法.仅供参考,如果您有更好的方法,请赐教. 程序界面: 点击refresh view可以刷新界面,点击write content可以在EditText中自动写入 ...

  7. DIV伸缩盒子box

    <div class="div1"> <div class="box"> <div>A</div> <di ...

  8. LoadRunner 脚本学习 -- 使用动态链接库

    DLL = Dynamic Link Library DLL最重要的一个特点就扩展应用程序的特性. 再强大的工具也有不是万能的,通过调用动态库的方法极大地增强loadrunner的功能.当你在用loa ...

  9. 【hibernate merge】session1.merge(T entity)方法的含义和update方法的区别

    注意:  MERGE语句是SQL语句的一种.在SQL Server.Oracle数据库中可用,MySQL.PostgreSQL中不可用. 1>session1.merge(T entity) 合 ...

  10. Visual Studio vs软件下载 vax Visual Assist X VAssistX

    Visual_Studio_2008_Team_Suite简体中文正式版及补丁下载链接:http://pan.baidu.com/s/1jGvOotg 密码:y6ic Visual Studio 20 ...