aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsoAAAKwCAIAAAAOTc6wAAAgAElEQVR4nO3dO3LcSpOG4dkEfS6Edi9EDDj0uAI5cEiLPh1GYAU0qJAL/xiKkCN68GT+S8AYuFVlZdYFXc1uke8TZ+YX+wIUrvUhgQb+bwQAAKjq/87dAAAA8NkQLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwB7vd3eX1/dX1/dHx7/nrstAC4K8QL4cn7dXc2xIOu/21/qUN4fH7bP3Px8/+CJAHDRiBfAl1MhXnjZIppCAHxJxAvg61pyhp8M5lMedkFiPScyfWaLGtQwAMyIF8DXVR4v/vw8aCdEtsBx9fD05/QNB3DpiBfA11UWL5wMobzrny55eTt12wFcNOIF8HXlx4vCyzWu7q+v7u9eP3p6AFwM4gXwdRVVL37dzT9AjUWNu9dxfH0hWwBfHvEC+FqoQwD4AMQL4GshXgD4AMQL4Ouao4a456Z+cuT1pSyU8CNV4EsjXgBf1vIrU+IFgNqIF8BXtf6UVJz7SN5Wa/sN6nZN6K87IgWADfEC+KLWizDkPSoS8WItY2i31eLZZgDGcSReAF/Udo+s4FkhkXjh3DtL3J3z79MN14ECWBEvgC9niwLqPbzteJH5qxNu2QmAeAF8LYlsMeZWL7iuE0AE8QL4gl5fIjWG5KWdEe+PDzyZHQDxAgAAVEe8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvMA/om8PTTesfw5ds/zdtwdN0w3Tx1Zt7/25vuoOs+3HoWvcMbkt2D77BeyZXmveyQFHPsQiAz4F4gUuhh8TZHeh9EmRbmrpb+buZ3lh/dMZxPr38qbsq5bPHNFXvd2GTypfn/0hbs5d+vrJnCpeBAvBePuci+zPz8Py/JTlAbDB49zmm6YbrztD8B9Law3Hn0S33X07bw8ySKeTHHA+xAtcDCctpLJEstuQ8WL+QuxQWHtv2anv76vW55778eLXnd9v7f33KWVNr1E6kl2gOnP1T599kb0/PmgPe7Nmu/H664uzxH/dbStAxuJz40XfbhPsx46+JWDgkhEvcDFkvOjskx5rtxF2MOvrTrxYD24jh8Lb2EsPhYeuSezn/z7d+PHi9cU9Zt0eA1b6uph9h7Zb58d0ykD0x14aSHW8ufHCnfTwFFZByWn9zjkX2Z+fh6IYkZf23m7XAkZJvBi6RgYK/8QQ535wuYgXuBh7qheiXwleH7pm6nO3NGJV2odhHs7p44XT2YzjuD2/tPR1z1pCX5rk/bFMgXPk3yaOfHfECzl/g3gxfSB2tcyZF9n744PxqNgj4sXri1MOyY8XQXnCixfO1UfAJSJe4GIE1154PYsZLzKqF+lKu128b7ru6GsvPixeeFWKoCMq7JDK44WXauYX5PW4yiD9r513kb3d3l/fPDiXTazz2b9mwrqWwq8qvT8+BFdXxD6/zdRD04S1CRnLKF3gkhEvcDGU6oXTHx1Rvdg6mvlPr9cJuqD6l3ZeSLzYeuSskFEaL+bRuJUBb1aqJQP30oLtY+dbZG+3XhoQfy5+3enJwHj9z8+DvPgm+vmpENU0ctZwcgT/EuIFLoZ+csTpKY6MF/5lg1t/O++h9aNhp2f79+OFP52pjFESL6aB+pd4+D8Y7dtD0zT2JTVrm867yOSs/vPzoFzmaZ5DqfP6svRkIBO/KAn+Bi4J8QIXY+e1F1rh3IsXzhtbNWSuM2vXDcirCuvHi9Nd2pkRL+zXwgHm/3IkGNZyCcX0xjSs1GJdv3i+RSb7e++yCftjqdeNKkgiXowitok4QfkCF414gYsRXHsh301XL1ZB9WJ9eT2v34pDP7OvclpQ65cjp/hhas61F607B1M9055fjghhcSkvXpxzkbk/Iv37dDMXM94fH7Yl6JzssF5/u3WWkfNrFOvzcqaIStAa0sTvSEgXuFzEC1yMPdWL1LCUvsrJLt4O2u+r5hK+0s8FovFive+Ff48m9y15mqP09W2SU9ULN8Bl3VzzQuLFxy4y7+rLtUr0+qIvx1qvi5kSzoKmG8SlnfxuBBeNeIHL5uxR/ZPQarcRfDo8mtXOEgTXFnofUm4f8SUcES+25SCvuHSvA9U7SRYZ8CkQLwCo9l9rAgDECwAq4gWA/YgXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgBfyXwTzIx7WvBICwBHIF4An5f7kArxWPvwmWbiiRaq8rjx9+km+qgUAJ8T8QL4AuZqhZ4gtsAxpwfxnI/9t+/MeNArgM+JeAF8Xn27PtlteeDmHBSUJ9kvjzyP0J7RGXn66OvL9c3P9+Wv98eH7QGkAD454gXwic0pYk4OenpYosHO6oUdL95u77088frCKRLgyyBeAJ/aliza3gkKRvVijRdHX3MxEi+AL414AXxubnUhM15UQrwAvjDiBfDJOb8RUS/tnGPG0DWHtrd/PlIePYgXwBdGvAA+tykwTBkiVr3wfrPqvde31rWbCVzaCXxdxAvgM5uiwlSZiMYLP1MMXXNouiH2sxD3o9ZH+GEq8GURL4DPa4kV3k9T1fMeomIxdE3uWZFUAnm75bZawBdEvAA+reBiTfPqzemNLX2I36Ue9wsSAF8Q8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFBZTrx4fbm+ur++/bX8/evu6v766uVN/nv2/vjgfDgcyK87//MAAOBzqR4vpg9f3d+96gN5u72/vrq/vnp4+lNnCgAAwIUpihd/fh6upnCg/zdFivfHh+ugpOFmlPfHB+IFAACfVyJeTMWJ5b+bn+/bi+bJkXH8+3Rzf/f69/3xJZJFlqEBAIBP5gTXXmiWmBJekwEAAD6bPfEiwql2OJ9fTpdM115wWgQAgM+tLF78fbrJONmhVTsONw/Oh/nlCAAAn9ieeDGVH5zTItMln0a8eLu9v756eRO/HOHCCwAAPq38eHF1f33zclcaL9Z/ByWQw+Pfk00VAAA4o3i8cH+JuqN6MX/95W30M8cyWHlvDAAA8Bmc8NqLl+kyz7lK4Z8xeX98oHoBAMAnddprL37dmdd7AgCAz+r0l3YGAwEAAJ9b/XjhnEAhTAAA8BVlxIvppliHx78511683a75I/phLu0EAODTSsSLNSJMN8JyqxeOrXrx9+32gdAAAMDXlnNyBAAAoADxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURL3Cp+rbpBufvoWsObX+25gAA8p09XvTtwe9EosweZuiaw6rphr49hJpu8D53OLSd//f6eh8MVLe13ZmQvj24rXQn0R2k992j+83sGTl0zfrJoWu8VtjNmBqeamX50ox9XAzNXPhuw2NT5A7Af6tvrYnzhqdNgDVPtjUwNtOig0/IWD0Pxvy1l5O64bT9+g27wfYaEq7ex0x20aidUS2tkP8rmyobFr40dM36TXMhLOPIsjUkWMn9QawtiQ1ZTpacUnPpx9Znk/Ulv4XTB/r20LStN8emliTXZafByoLLOfIo2zelBuUNy1hGcsTRHewq/ygq+Um/T2q6IT0X6m6Z544Xhcs8Gi/afvtHOFzRyc//3ga4vW929qnGKktz/scwOPGi7YOlePSB+TYAbUOVrV77dXffG1n1l81JblbK50qXZsG6HptJ65a7fmUZ+Drrg2E4y8ie9+nNbRp1MNvDDlV7v8rWLGdMem2KLyhvHs4DSsSLxBqyLp51xGJB7F/5zY5Jpve+PbT9Nio3I3gNXfbCsX5um3/q/MgKwspbYv3o20PTde6oti+bS1CZmZnxIh1XlW8NXXNoGjOViDnh7WQjO0AxV/0PZ8eL4GuZOxOLMYPEWuUP1t/H5QSM/J1oYhq8t72OLi+leuviPmeIF1kHXctSy/xk0G2XxIvs+RlP/VkLaW7n1ID4kU+J+NFo+lDLHrs8MOzbw0Fupjm0STLjhbKrHfWtKXuK9rZzxzFPyZ7rE8SL1Bqyvuqs/3Is++aBPiY/KqvLXVkfnF6vab1B6vNq2a6qxQv51eUf4kDFm8i8dVgriASNGLomfuigcmOjuYk7kxONF1GXEC/k19Y/lhbJgSphOzmfY8dc6Z2YUTTPzaafqnpRvohT1Qv3aPwDqxfpZeLEn20rK9s1RQeuTXW4Jue3cxyXPZjSlmkt10oiGQ13Np/1n5GqiN8fafuVgimSDTCGmoi17lZqHdClZ4Q2kp0bdipeZEarxjineDg4B9HeDC9cQ+Z3lB1u+Y5+m/fu5moEjrClzpbixpy2bedFbM8JvyZymnjhrKPbvkL2XLnVCy1ehDvHRAY3Etb2st4thvFCxFW9jVb1wlsqy8Iy23qCeOEMx5nR66ogU7bZj5jvJerIntg0DPKUVd9OVSY5m9LH8EfEjTPGi/RuPmvH6B5nmWuveKV2vNjeV/nbzaFt3WZGP57D2YLbbY95OBy205zOoVysaDLv15b9zLJXMybJP2rNWZryDX8nmuyp7XiRMUXOMGQxJHa8IFeGoH+YvxzdSCMrjbNK7aiTOG0oql5Ep9j5eqR6kb+GiNVa9sf79/Obde6bffoUkJaFMXRt0zjzfVkNlhTlXVScWekRL9pNaRrl+NVcg9t2bpH4SmH1IqgUWM0L9ov6RDqHLtsm4Q/Ym6SmbZtpMo6KF8tf6y47PPLwt6ioHTtaTdN17WE5PbqdgEgM3UjC80iymmZvOutQRJvTg/0k1YtgD2fGC6XstK5Cgyjj6jF3Ww8G8Ub80k6puAMIV6H14KTaMtxWoK2flQP3E7ExdjNVZTYiq9PwZqH3LWWLFC9Ft6aMKRLVHBl01IND7aCxbeMdotZObX30St/Fa1dmScI87jRH5h/YK33VjlVXzmu1jLDDMhO2xGMcl4/uIeZhKk+Iil/fenXFzPlp5wIzXqx7oWT+XmdQP/RmJkha1j2vKmlsL+uSHwZz1RTf97dScfDt7sCXeCF2wVsyyVyLs+OFOXWiYclNSFnuctDbZHh7tNJhTTMzc1ds7RCHrgn3UuqH06ULdyGVO1O8WPf05vQFh0/qHl/Gi3VJn6V6IT+srEbL+PrWjDa7lqZ/AWPisznjzVvxtpmfszSVYxTR3cv91BwAxTLeMUXbwNXPLtXOg1zF5CKfdvbxmkpBDHI+esRRfGlBYM5IxrkLrXMY3fkWq7xF1hAtUsTLKBF96wzdaoseJbeX5lVWPU7WYpTsZecgMg+m7dfxRKsX/gwVIw/X3qCikNsfiji3bgFzlUau1lmmGpA/aeFxgbNU3f2yt+EcV73Y2hJZ7mHhMTLGozhjSu8OYuu8rBGK97KXkbYOZvRe/XQtcb3yxVnihdg3TGLVC3PvEcYLfa8xWvFCf99ut/qRggy4tNNpwfLP3dUDd3+j/IRhGbXx1Zx1KTpvspdm8JpZtZ3zSt81h7YbhnkPFvRRWj1GBNLIHDX3L/7eMahJz0UieWRnl07Dwy4xuHhz0uTiiQ9q6Q7ywnKNNcTKlbvDhTdebf3ejqGVbdONNo1ogRsvokszjMZOvIg2V+7zvXaGg3TnrLVCp7ZPt0ufL6KRN5UZgzFFV9zYNLnMUlV8hbHWOn9xJ6oXJ4gXylqxHCyatWFt6zTrK8HBtGkphMWaGuTArC94B1d235HjDPGiX34mlh8vYn8fFS+KS5u5e0Pro0q8WNbNvfFClCODUSmfjtG+4lVCg3U2c2mG0xduaH5tUOmU9HiRnGqN9UlnI7fXovUdrz/Sio/hSuftAL3+an+8DGKbNaj0Liy1hqhfiawhTou2q4OO33N5B/8iX9rn1LxJVvbQudULfyqVPbMu2hWnqhf+0EWONrdio6XqJrutjIOM0DXihWhyWJDI2zH1mSdHThQvlLkZq17kdXRjOB9jvY2359SzmL4HNrYEWUnrW3+W73WW6sU45s71oWuiJxE6JSf4u391hOunnREeUb0o+OjWzqA87G412nfjuyZ9VGq8sIuQ2lfkTSGS3Whk5EoLC495w4OEdK14+k5WTVlGWS0QGTuP1HyZu+ClGXNNzusGdm3Oyky0Zv5cFBJF8fgqnVG9yFhDlql25pUyx7VBl1xFrw5x6PtBHZ9a+MirXviru1/tcro5PdxHO2q9erHeicpvvVFrELNF9OJqLcGdH5mbR940uXtaGe12VC+Wr15gvOi6sE9RZ446v9RjRGvrDIdgbHJygOqaOo9FzvJwZ7HDvxAviqoX2+DVfYOzd081KKPN5R/12+n1YMpWY39Te1dMWEm8sHbOyk5WrQ19fLzIm8GpsVufDA6Bt7FauywrvojeyvtTHVRGh+61J73VrJ/UhmtN6vZ2tDVZa4izqxJTPm2n1hjyFqbILorlYKxtt+a514MqvV6seuFuQ/4S2Bps1w73Vy/8D25Tk7cx6LWarD3aruqFWOPEDKkULyKbXEZe2hUv9GVk7LH1ZRfuK62ZEW623uwW7UnHp7XH6Zeqs5PQmvUXcHKntreMcd54YV2bs06SFS+cNUffmuPVC2dolkTjrHV0a5i+vvihMTxaVga5DVldyLJIbE+Qvv+JbOTK+VmjNXlLM5zQ+Hqr1Qr8IeYUVa2JN/suuQMIxqoOIq+qE74R1rOmXwmkd/tmX6Vm7eic7udTFaXzM38NWcdi1HHVBka6Nael0TkVjjPcmzsxV40X1kZtFI4i6/bO6oWM8mb/4vJ+gGAm+UiLMmdxVoVpm51Bi+VdwmNrXd+5v4yzCkRZ6bx29SIsUVhnfwrrh+7mK7fPYH0045w/DeHqqRzwVHC2eIEy0QMIfDoFlbJPi3Ue+JcRLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVJeKFf5ew9c5h8kZrubeS32saqn5LQf9Gs6bo/bQTjweJU58xsNwzTbvtqHLLtZy788bu3qzcgCjrrnTWfRSLl3sBd36Ht/AzH52QuCO6/27xaqjd1dy+3ffeVVx7jEl508SbGeum9c2sG27Hblec8IFLM3aTwvVBIW2v/O8e4U1rs+Z7ckIG70mHmfPzuGUk96CZ98HM+WTGHlTtOcSqGZ1ru26+qQ3Fu99lzXXevyes8biR/EWUu/+MD/aDbleXU70w7xZvP3oif9vI0S/PENZuM5yzHkb3JAXPeIh1D/nxQr4+dM3UcUfvz709LMG8uW9wp+PkLbeX1Jbz+I7Ici8S3Xr3dEhqf5TYiuV45KgjI9zdLaX3tk03BLMnPrrIovCff+HvWoKmRGdu+fT2+x8lkrc0tTEm7k/et959soeu2b2Plfdt91poT116u/HjhbFz1b6VXkb+bbm1e1hnyH9UwrwqR5slp8hPGGtP0nTDMJw2XnghoOShPw59nffvxm7em118IzZFmfvP+A31LzFeTP8wuxkx3e5EHLMSrN/NiRcm81kRBWuTdcDnjtd5vusSI5QtTtyCf7uhvDJ4WbWwKg5GwDGnRKz1euzOWe65kqUKZ7jprljtOYN5vo1H23epo54H24QPEXTe2jfx5euZMR/cji23E18b7r8hhlB6LKW3XnvMR9WlqU1sfg1SCVjly3Sbjf4slEcOOdpefLLpunmgbvXFOQhOD3HM+6h8qE/l6kVWvMibTfo6kpiiAkvg3LF7s+J0eOimraj+fDI3z5L9Zxh5/Vr5RceLbd1VJqdfH/DqbmW7D3e9rapS9SKMF7276Mxjj8RxZHb1wqnPRh8C3rdGcwb3OWY6Y9u2H10TxJa85V6savXCG1jfzvtprVeV8cI4DFt26YclXpiHayVb6LzuRHaNYsKnZ4WpnaY3gfnxwtl5xiYoueuJfaBvtWlJtcx7I3NpqmNOnAoyHkZevnMKdtZGmCqoQoVD7qPxIncZbV9SqxdySNbKoXecqU+u+w1jdXPjRbqsY64ytfvKst2bvc5bRSWtI3FWIlF1DAawp3pxofHC2x82bTs/s1XpZpyVKJg3R0yOu9vQ19O91Qtjq7BW1+SesyBedOtmpzwtsO265jDnnaWLMSYoLHrb07icWXHLK8pAu2m0ffZyL+et6pkHkdkdUtPIDtmKF/Hgf1jjxaB/YRdvZ29u/drEWd/MjhfbjJ7OExR3WVlTl1cFqLA0lSEGW4BoV7dtwUPXNu6sLZzyYeiW3VJ4eKp/w97m5I4pI14UKI8X56hebH+nZ5FQIV5k1U7sHt0sJUfWDC0NOwt8WbWselzO/tNbQP6wLiZejOPoH8Uu3Yy/JmxVik7sz/zyZvlRwqFpzG1BfylhbbhxckRdXeejyH69wlTPpG07/Z8zBmfxu+tOMJZjO7Cw2VnbXfSwIWe551Z/9XJB0/V5h44Fx7ujsWX5LRflNRk+mq16YQS8Pdune8g8DNG8M/hXBmxlDPHRzHixZv1+uQxBES+viLkXn7y4CkszGLNXXgve2oa3BpHlWfJ7t7z87217Qm0gxrFT227rrd/QomUUO+Jal7o/t/IWeH71YtSanHcWIiOwfkj1wm6o8Y7sI5RWWrWN1AGuP7Pt/afcbPzD8EuMF307H9iqR7GiJ+3bw6HZjhH2nCDp27b3t0ArXuT2cvP3w5Mj7lQoR7Zicwh3GLL4Gj85Mv9va237iSq2sjmfNF7El3sx0e/ll1OVaZcL3lnA4rBc6c0HbZKGrl2C5LCcNlvrcXsnu2CK1ua0/eB/3zxIsq1Tt6T0NV5kVy/yF3ZkV1t9aaojtheQvnufd1PHFaaMyXODXXSNtqoHTixe45HV0pyJyKqzbONXK2eFnxTHJ8HL0Warq3zpdrSDs7IFDVZbmR6XMkh3AFmUyvj8b6Ne5G4p80icVesS48U4jnaRWdR7vAP+MM7ly4oX+vfMBR+JF1rBTt96tvV/Oa7PPTmivJ5aTVPv58eL+Pps1zajB9uZtgNIe/PQD5Qih+hGPdA5KWLFi1F9d/tETuMKuOMIViWxkngjWroo/bg9Wb0YumZdPfPihduAo+NF+KkKS1MMUPbJ/rv6Or7URncuU2/WBbsMscuy9lPhgj8c/EXTt8tBWth3J5ZRQWUxnAP5K3tGqEvEix1d7DrdR4bDQL9dJeUeGR8TLwr3nPGxZe8/RVJt28b9+1LjhfuHNrPm5bIunmUd370WePEisc6JxpmfVOLFti1uFRNZvwqnNziucse6DsLZjJ2/5RY2vWvshYy9bjjlfatVaCx51Qv5x954MWxnhpZZIBoQTpzczsMFkJg18XjhfMqIF+alnaWzwG3qMAzuhPkNV/ocZSdtNl9f8G68MPoddVlHtyO7EfY8qLM03RcSOV1OjX9EdEQ9avuqvxsoOJVw0A5LnUkauulSrXCIJctIP/aQRxI58s+GesdQ4ZdS1Yvj16VdvLVpHcFR7bQqOib7E3v2n8s0BUP9kIyRGy+WdUJuniKUuqf8nC1Eru9CtLRRUL3wNu2d1YvtFfVIKFrMK6heyD+WQctEM72XrkusNdicyC2n1H4zZ7nnmwtc0T1jvPMIJivZIbmHSo78eKFUq+QkJVZvY0qNfbKyUen9vmhXv9waYLqsQ7ZpG7v+E2P/YCdzOwoaEv9kxaXptFSrZrhzsO+DUL99Obro7P1SWO52NxZ1SOnXg6rHdqimLa7cZTR0bbP17vOJmuiCmo92m7ZN3Rok/slUMD6m206uS0Xb5vp5o5CzO1Ir76d2zPb75fvPoVt+Dh/tiMQ46sWORLwQq2K4dWtr+LZLXHdzyv5uE5/fuSlrmvete8YiL17kv1s3Xsh9qTsr/UKLoFRKlRl8VLzIX+4Flhpd7iYfHEoo8UDOHq3z9YrNRvvVeOE3ZV2e4XzZm7ecwTt9+/LPbd/g8PJGbLNy0743XFE2EfFiHn6ftR0FI4x8su7SNOaOMy5x8ung7R22D0QGEz+MFKuLMjV+g7QhuWOQY9uikxcvlpVwxzISc9fIA9uKvs4oZeBZn0ztgnbHi9x1KX/bjGQu7YjPfS+v/CtjQGbRWLSxYP8ptn9l9SqNUjvkVC+cUc8tCvo8pUATHlmoxxqjue1570YP/aYKtrW+qZtU/FDSaI61pvbbT96ceZWuXngtMYZsroYyhGxlI3MuBZfOmR/0xpS53FP8Di418+Ob49ok/XjXG0GqbqaNwA0lwTDmoS879uRISke+jiNyyDT3Lqn5rxyLhHUo5xebsf12uIyCD8VKkFWXZsa0z3ubsN8IA4XRSZj7pXUuLS1TDhn9l8WglGqK+IS3IJy51/Yly8h/N6zFrg0I92DeonCmKP+TZl/ltCqY69ukxnZ8OetS/rap9Uv+nIu9aQ09HuYiO/ZIXSFz/zm9H50iq+G5B/OZSuLFiVSeIgA4GvslfDW11/kLiBcAAOBzIV4AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqOyE8cK+8WDGzSPV22WLexDKOwRnsO7Mm3fbxdh92veO/dj7SY/qxLu34ovdpC36zJHEvSMtqSkynw0gl3zuAEV7cxucmPbgtro5N50pvdt8xqQl7rUt2xt5WsG6HujrK/eQAlDTyeLF0E2PO7buCltyL3rtcRHTP4bB3O/mdY3L3YVz7rCcd0N2/6ER9g22g08fx2nbMsxt2EYvptwyWg4yrumGgimSvVrbrzeldm46HnvORGoGmI00vqC+tQ5Iu2PxMfFCTRfFD18Rr6esW4tzl2b9mSvECwA1nSherDtEdXfa5UMAACAASURBVM+YHS/yihLWzdMTO0x5qKs81SY9/nAU8Xjht8wY/p5yRiRe6LM7eDiXMumZDSmborU5wUOHln+U1qKM5xHpz7hxV67gYWfe9OfEi9w1RHtYl/oEl5JpT2YCd84SLwB8qFPEC78SoBR3p72cdezlPDA6Wb+2kkoiXPTWkyaDenjOyMasDtF/6tvSk6jPstpxOkLr07Zny6WemKWerwgeiWROTtkUTX87H50baJUukj2o34VucyTxREBn5VKylPJoJGUWRwYfvCEe1qXMlnAzyQ6aiVMoxAsAH612vHB21FsXL89T7Dg5Yh7BGd9XekDRQKvrXHtV/YDfjhfbtIbVC62n8Duw2OmBHP4JpC1eKGd95OKws5jVLqPji06RGVXatj003aD0eVmP7BTtTa4Z7iOKxYN+1UjVdN3S9XrP8DwuXjSNjAPhPE2cFcqscywPdvXjRfYsBYB94vEit1LrPJza24nKUw9OBX0tjyv7uOTZdvPgdFyP4/qlz6q428yMF2vDvEfoivMD8ng+UqfPoiQB9+SIfw2sO/LILHKvnR0GP8CEkSV7iuRs7NtD0/VDH1ZUsp8avKxIzrkV/bSU9SBp2TB3nvUniBfi4pigcfMr5rYmxpkKJsnqBQBUVq16EfZS4SvLjtCNF/7+PiNexKKFf9GHe/2GOFjPCUxd5u9B5BQd3PKNEjqmtrW9OHDev8NXQqDsvea5ESwSq6aeN48OXt7ImaJguP7ZG3FZRqQV3mUXXjvMVsqJV3t82c55runxomAuadde+PM/yExaVFFeG/o+KMVZ55i8eOFO/+6iGQAYTvbLkdhhcW68yN19u32NfoBtduD5B3LKWYZwipwdd7/2kOGu3BvO0pUed0CpnJ7xLzJVloW7hPTz8W4hxp+dscsG9CkKTlkFl3YuQ1aP7v0hydeXVUW87iQ8rft2AqicnrZt5lTQtpnnEmJriJ1llndk+zKuYwly5fzWtt04S9ePF9NZoO0kYduPkV9hAUCxs8cLbacd6fPNt5QLCpTSt3pB4voF+/jN+65y5cF6tO0eRjsnRqbOShuPEbWKeSdirOqFOUnaZHmRaBjU0wWlU5SoXojuM6N6IU6FOKOMnFyRDQougji0vX8dSfrkSGINiZVK1Bf1rSeehu0ahDMn19V02fioWgA4hbPHi8KSgvGWeuI61Vv3bboavQwrUbied9Vmb75OaHD63xlyokIdu47E/ao7ru3IO2x/qovLqB3J2kNyirwPu9WLtm3CdhZUL/wpy+k2xSJzhz4f6Afrjz3e5BqSjBdhsEqt57kXRs2zOFgoYgqdkhGpA8Dxzhsv7G8WVy9KP6jsnOfz7MoFdt6uWXwja4qUCvgQ/hjS7PZTo/Bavf4R6Z2DixfWKWpyaih+XaRgilLVC3M0cpDW695SUa2LMN5/FsSLnDXEuPbCG4h3AUlmznXeOLRd10z/LzZt8TOT2gkrANjhkuKFswvW9uzWW+bYI5+MXOkQPYI3ahJmj+cVpb0vxn9Wq7xnHzo72cUblf4NMUlKPxeJduZCyJwis3qREy+c9UNdQtE1Y/1c5vqTGy8y1xC9euGFjnUOBees9MXljlmeswnfc76lrrNuKNVXDAAoccJ4gZqil4YAWbyUk/q5CQAcgXgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBfAZyduj8VDUz4iljAt2tngRPotyup2xuMmP/+At6xGR01tys1KfOam3JH17y+2uk+vjMeRtGktupBy2LfawNu+N/fdrjt5aM/jksXup/UskSn9unHhn1B/DYt3TvVByiWQ8rkW7j1XZkk3NTDG0rCfqyJuL+jd8Tymbn/lTaz+dLrzZ3JFPBvRGWboFlE1R3tA/dCkbg8iZLnPE3iOQeuV/1Q8Hf5yQsm57T98xttZYE+UglUc7Rnq16J7iA9bMerfYO1e8EI8YFSunt+Y5G1hw00HxACz9QabJhjRN7pM+tnFoXYp/V+XUjtcddGzxZ8WLjI4zMaWeOo+c2LdEiobrzvWmG5aHiqtbbNP1mbM8oSjwpe8cnzUYdcDJx+oYcUsZs3gOyTLw4Cnt2sP8chOrnGlZ31vukm485W1turov2Xmv2/QOf37k7K4pGks2gw9fymq6SLc1tvJOA+jbaY+/HThaDw7S9vbhpASPP9wWy47+0ZnsMP8YE2c/9kJ+LBovlM+bQz3tmpnY1sqdKV7MCzMrXgTfUv9avxY7clQfZbIm1egoRR5Sjhq0x0+q7Ywf28YTfTjmZYCJ2ZecUjnVVVav8iWSbFeafACHX734mHiRrl+sa1WOxI7YJ8cdzo8989P5yq54MXqrnjHmsNIfPF/GehKM0xD9SS+5Bu3JfMdOUdkRqmjNhy1l+UntNb01ZjPVkbd97Ph+CR6RLXSe+ODRQ/t3WpF4oa/iQV3d7ND79tD2+kKwlqx9rFt9zXSHndzWSp0nXiyLxttEmsZ4dpPzJfflow+E/YymbyBhvNAC7fryPEita/PGGznAKC9Hp7NmzpTKz1/iKdx0d7HNea2ec9zJkZITBN6Tw8LqhVrUz5nj/sFdcvn7fa7W8WTPT+MFNeS7JzpljW85wAxG7A0pPDx1PmVW58TLe/YQ8245sqyDrTlvijLfWd8+x1IexFmTqVcUi9sOO5EpksvT2X2azYvHi6br/Oc2t+22PyzbssNjATdeaIMTfZE2190+QYvExdWLk62ZO7a1XGeJF2sySlQvlsW+JBFljzy/38Uf8xh+2QmC25v+SuMtx6Ztm6Yb9HjhrJ7BgJR1JS9euE2NHyvHN+2MKVW/cmS+6EuXyI5hqzuFxdmrFyXxQuwDzN5HTJQTZrSJ8QZjdzz2DivsXjLjhdt3qDu35TVvPjkVnbXKrS9m/y1ZtEjNxQxKu9RxZE1RKN60sy1lGS+aRi49e/rtjX1eIbqtwDB0bePOMPWAQLfuyaa98bJZT3/tjBfL1IoGraVXJbWK3srqnKdV1WlkODa1KfGgVm/NzN/W9m1IZ4gXQ9fMnXXWipC/srjFLFnnceeOqPv4b4u+2l0QS7zwe7dtP9B535KlRX+EtvJ4oeSbHVPqf8st1OyXs0Sydir+DFRbrO4ExLfDeLFr7GVLJL2cgz7Y6n28EXnfUnZx4qXoobQ2b0sractc8scbBicZTtwOQ2tenOyK1QPkYu7B9TD0XtcTrmflUxSNF+daylr1Qn5Cn6jIHmNr3/T2GkSW37zYsyl8Z31l/se6DS/rXY14sc5Cd+/lxuWwN4mEyKZxjynC1Si9o/D3P6deM+s6Q7zo27Z31oh1d9uqvfY6L4xdXFjzmCyFnV7susO1QS9tKOuad2mgv4icxq1r+pbPxaZdu3rhTYm1m09OaTD8dE01KWuJHEmLFsvozle98NsXHdF6BGHuafTCt7/sxCHVPKy2Wz8U7XjiI45Nu169sOJF3x6atve3RrV0nEGbLL+T2LN89+zuU1NUNMxzLmX5GWfF23pDNUIk9hhKs7YuQP+OsgC3obidwrKj3R0vlDkjc9UWZ6JVx4B/CBe23/qSddRXe80s29bKnSFejKO+bm0z36ojiYWiVCXCVdjffjSR+Bk5IPLaopQ8nNpdbATme6Urk/yqXZYwplT5zNEpd+cSibUtx3rMocWL3RtN9hIRv1yOL7teuybNKHHHd21r1zPnlb5rDm03LDvFYE1293ruwZmz9JXFJNeJknihRxN564bECAW9N94bLpRx+uMXM2XvFJmNO+9SVqsX3jvKShHfYyhbjRsAg7MvYqje5Cvds5O3jqteeL1PEC/01JbeV8oufUhftRo9/Dz9mlm3rHFB8UKUvPwX5+XildqUNdmteRycw4FDpEfLjxepg1+5b1t6M3moe2idH824Q61QMBiDQ5xg1BFKYjumQTuXSNkYtAaqUaDpOnPjPIlwpyQ7i7711wXzi0ZS87/WezVqpePVO574iBMfKIgX4Q5wbai5JNz9odrmeShD1zoL9siVy23QMHhZxW/DjimS/WWwBM+5lO14YQ4xvcfwxhYclUXDxTYAkRu8vedWTz7u5IgsEobVCzlZsgNXopX7a0PvnV3x4pRrZnpbK3f2eOFnWmXXsHzGDZLq/sPJu+p9TGKnFKLxYhmd3DT8VLqO1Ble2I8qm8roDVFpjdd2pTQhVgWzeJGKF+oXY4daqWHuXSIFMrZToyR5TLxILZFxHMdx6Frnt1DzJTvqKHPiRSh1hB7reNa9jF0y3xoeHWV2vFA2GDW3+4MK05leDnOzutJwbdDx9TZjruyYonCsqUX9oUs5GS/E2HL2GEPfD+pSkTt2awDayI0uOxovYktcK3WOfeucsQ+XWip8rePTDxZ2xYvTrZk521q5s8cLcSx3cPcV8ydFZ33YfvYml2X68FxhfUl0B+GWpR0Ib4tyTUpOZHL2FUGM9PYFTiBXNjWZWsRKF4mn0auQYvnLes9eCY9YIgXM7TSsqnb2AiwaX84S0d4Md7BmU04eL6yJj41Yj1G58aL3K83qwWBYFxHCfYYzLLEMjCWVMaEx/hFt2RQFh+Q52+yHLmU5y7We39vTZe4x5h3U1Fmvx5VbJdMvaES26CPiRWLVVo47rG7e2xDkvrfZTsNGklps57Nz1Txmzczb1na4kHgxTZ7fX4bBQ51NB/cy5FS+s2JEzr48PD4K9wy984vasAaTWKKJLyhNKuy6Y0EqsRpZzTGT9jFLJMM20Lx6gNPSdcYXbjkFS8RftkrJ1B9S3x6231an5pI77GRr1Drg+tWMY6FlAsyNpHBnGF1p3ZFEzhIr65zVK4n9SnQYEc6M0pNleorkvDaOLfyGf/RS1qsX3tq8TU3eHiNcMmGPN/fF2gbmb0nHHKjYS3zYrivxRqN/Q8xOJYE17g0MrO+qBxnl01lhzSzd1kqcKV7gczhy7QPOgvX2q2GJnwPxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFBZMl6EtyOJPRXF/VrmTRHNG+sZH44PNni+Rfp2KvH7Dqo3PU5NWupOvqK99l21t7u46ffeU+/RnLr5m5jj8xQaN/db72CXcxPOkhvXlK0hlRZQuGCSzYjdQdm/ebD8X3cIObxb3Fv3iF0+F9sS5J2hg3H0bfBc130PYznL/IzdpB7AxcioXqy3D/Vu4a3c39z/Ts72b+54I92DeRd9/YtHxgu188rpRaNPMknw9rJb72/e5tp7zetXjPskuy8vU6gMbZv4YejVHJQVNdVPFtxFr+4CEitvsvmxz/TLA0+3J1iO47A+wzHeiEgr5TjV5wnYsyV8x3xgTjB17hMXsjbLs8zP/PwO4FyyTo74Hd04+s/f8h4olOQ9CibcQ+gPdnCDzbrzC7+sdXZGr5nTSO0BP+oTR0qmPdmtyifqlMULOZ3qg3/cb60LNRov/JZ5n8jfyzujNuZY5JD9qAW0jj41xMyZaDay7YPXtS9Hn+ARftmZy94imV6Pzi0ZRaZ/mPFCLE93nYg/3OLD52fWk4IAnFHRtRdhZ6IeQeX0oMpD6cyapxZr1GfBOe9mnkswpyGY3L49tL38qDpDjqgse46OF8oeOBil19Ek4oU+CUqrtkfayiU0nWNRJ7zkYFwbe3IBRWZX/K30U+zV8xrmupDuGb2F7c2trPUrUr1Y48X22CblIVbzBuoOJxzxmecnBQzgwsXjxXrkEPbu6/tKB1Z0QCOfU6d9wNq7Lvuq8Ainc/aU26HucfGiaeQOTd3nxvZ5mXWO5QF+frzInqXrvFGKDcGJEfdw0BiDXA28marFC++pzVqQcFKgU7GIXCtSYQHt6g7nSY+suuuzTqfg1DbuxOnnDQ+HxLUDzlq0/FOc/luW1rKS25ult8o1bdt4D3R011f/Yp/lq2IzyplpHzM/yRfAZcuoXohjGP3IYnvb2HeEe5xlv+fsPZW9hT+OaP3E3d/0J4gX4TmEMEwYnXSqn9eGlaxe2Kzl4B83D11zaNa9tzKjgqWtxQs5kco4vOWn9xCxyau0gPYU86eJUXvLbTqnt9eOc+nrtUka1kdPN9pDzsMmpspTau6PVy+WeOGPbNvCO2/hyVNO3gw/7/zk/Ahw0QrjhTzeDK8RjOx0nM7J3VHp39D6KqNDGUd/OE032PEivlP0xq+d2venO9hPaj2hVuLp++CKDesckxcv3OmP5iUz4zlLrG/bXik/WMM14oV6csSIF317aNpeVJ/yAtrxC2jH0bZTOjDCj16/m9dAc9as71k5UJ4E1CbTvjQiEi/69tB0/fZ+kN6d2TsVwBpvjfNWnzPPz/S5OwBnVBwvlp23DBfqwaNDr65qHatzdlbrvp39sgweU+V36JpD22aeS9BOIQQjC5qyvCPbl3FRQdBbbPt50cggXkyHdMvFC9NZocG4SE6fJnUXrfTTQUcu5sC+eKGfWhOFfaXJFReQ3sjIqJ0pTscgN3cH52ncCZEx7+C9tS3nZWj+/DQC01YZisQLOXqvJc6Wt07HUmqJz7MzzE/iBXDh8uPF0LV+mTly/lQn+9ht7+EfqaV2Gcox79RG/6R++uSI1w+r513MUon6or6TjZ/WsPeR3qnweSBLDti5Vw0bqHT5TdMcmqYNmtzPvxpcs47y9WAcdqlH1OvV9lZcQHOz/OKbempBnQ4jmnldvd9Py8KeOzB9WMsCbp2LibxSgzLO9Emj8GvuH5EzOOvMXxrjffCs81MfIoCLkhkvxLFEkBc2BdWLYAzJvcV6PjYc+nygH+yE7PGqfa04HIz3XsExoZoj3B1lvEzgJzGt9C2mUJ84+4A/rGt4A9xKGcpZEzfZ7IgXShVe7e/MISkfzF9ARjPm74XXQYjj+O1Fdxr6flA3BlmVs8YZTPA24qyTI8Fs2z6qHegv35Udd3ByJDgvGW52Z52fsg0ALlI6Xgzd+usCsZuZNvtw76J159ZBunpkZH4qET8K4oW3+xN7cGvHHgzHLzLb1zvYb0w/4Zx+xxmZNuNIP9ItR05tB9UKcbYp7JOD6SiPF85icFYov2F2JejIBeRMiJaathmwTna095fnNQ7zubjlcgXnmN8ejH32ar6dZqLnnBZylz6AF00W64zbEuff2+JYK5VOyfIi5ifpArhwGdWLiXJGYhzH8HyGUgI3D0dSO9H1c5m7kdx4IU/g2DtI5eDY69PWEzBBp633eu6Y5Tmb8D3nW2EFeoz0UhEi7QzLLwmMWoLciUfOfeUspyBF6E2rvYBkCzzeRyLRzJsF8zXM4VIPXkkVtMTrzrkcm7ipZfSTcurDImQ4j+ehh5k5fOVc85MzI8Cly44XOBd5/iLSe2QOjqM+/NtYiYHLR7z4emTBCfiXWIVUABeFeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqCwjXrzd3l9fPTz9ES//uru6v766v779ZX7zz8+D8kUAAPC5pePF36eb++urlzf/1ffHh+spXgRvzf78PMQ/AAAAPqdEvFhKFMt/h8e/4ziOry/XV/fXNz/fppBhFTCWhDF/CwAAfAnJ6sXri5sP3v/8XULDdNZjqm2YCWMpcnCKBACAryMzXtw8XF/d373+erp5uPbrGdt/Nz/fle8n8gcAAPh0UvHi/fHh+urh7naKF+P744MeFF5fpg+E3m65AgMAgC8lFS/ebu+vr16eHud4MV91sfx39/jzcPXw9PrzYNYntqs3uAIDAICvIefSzuUSzjVebP9IxgsvjlDAAADgKyj75cjD02NRvJgvvLh7Xf9xoskAAACXI++une/7To7MH355G7ffsmqXfwIAgM9kV7zIq17MlY+1YjFd48kVGAAAfHYnixfzD0bccoV3wwwAAPBZ7br2In1yxD0t4pjvssUpEgAAPrMjqxfTiY8/frxYrs/QLuTkLlsAAHx61eNFLFtMMh61CgAA/mH74sXty/IkkaUaMV9RIS/n1C2POuN3qgAAfEZ58QIAACAb8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlZfFi6JrD4dD20Q9E3l4/NH2mbw+e9ZvLYNZPKoNouqFvD003OC9Mw2x75X+VrystWCyDBQAA5fLjxRQt4l2x25drPffyZt8eDm0/OvFg+e700pZSvI94jWm6wY8z6wDafmuHHlCCMKK/CwAA9siKF32rHtD3rV/KWLryoWsOTdeJYOAXNvp2/cj8hh4v1ijikwlAzT5tH7zedL37SttSvQAAoLpkvOjbpbMNShN+H+ye8mi6Iag7rJFhG06fEy/GcRgG8yyGVxSZPyVCjDh74v1B9QIAgPrKrr1YO3m1T/YP/e2TI1N1Y0jGi2WQSl+vXOMxJ56uXb8zdG2zBgUvSKjxIuu6EQAAkJQZL7yefvpDPcB3umuzerG9mVO9MEoJouywnUGZ3pjb2/Z9u+YIZzDz22sY4fQIAAAVpeJF33qdrX6OYn7X78Kj8cL9yBwg4vFCXETRttoln8ootoFvjfRLLFQvAACoLPfkyNIra2cktlMe7lmQ2C9H5q7crWFkVS+2P0RRQxnZ9sFD0zRB1FnqMHoFg5gBAMB+6XjhnQpxevXUPTBi1Qv7lyFWvOjb+T4YTh1l+qdT3hDnXrY/ZKVjGc7yK1b/bfV6TwAAkKv4rp1bkULrgp1rNCLxwvln384/D418tmma7aqP9XPL8OeLLfp+cOonXl4JW+udMonEC6NmAwAAYkriReSXHGP4W1U7Xjj35PTPYbgnQbwe3q+YOGdf1ktC148uN7OY44N7Nao4ydLPIzHP4gzbB7jQEwCAfFn3vfCvZkgzb/C51jWmX50GRQPnQghx6YUabdbfhyj34RCBYlwSzHJbrbZzfpxK9QIAgIp4pBkAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACoLC9eDF2Td+vKrIeaD879Mtte+V/z09Z9QLeRizuLVrmf9xC5e7j9hvFZbeDxWSanIZimsvn5gVJPvUO+8L60AHDJcuJF7B7ffg/v9mfRB7KvT19v++07Q9coXVHQeervKq1s+6ANO7o6/4muWZ93Hgyb6BCWx8WHY1Bn+vbgenWkufNTW3T1ybS3jrhkbh7RWiVauuuD2Ypd7TyCFoHVNijxGQAuVTJehM/uiH10fRRY03XWI83UjrPtg9e354NMn2hj1Yt51+vtqoeu0Z5tUiC7auMoiBdrclEjjPPU+O2J82Foa7vs+Tk/5M0Z0wnrG/40uX9lB7a9rV1nkqz6bC/IQR/Vzr30dkbacPIWAUAtiXgx788i9Qv31MS055u7w8gD2ddBi12n82BU8XTTVPXCO2Sfv9u3WlGlwPq1vCpEgnYk7T8jVnzCqF/0XSendB1ean7649ylb71E4z8i9+AmK/vxudFTaFsXWtLasOPViieiDeHAd7UzMk92tDPaBgoYAP4VeddebHu8YG8XPiv9YF8q4R6TbY9HnY7N26ZR44AaL7Qdf+oKiL2HfVOPYAeIrbQgW+aduQnOE2yzaftm0EitSt63TTd4cyB3flrH7IVzw80tekEgTBdBtAyasSy/ZIUh/q2F1m0bLTfbldfOnCHntzPeBvIFgH9EVrxwD4QH9wRE5FnmdvXCOzzdSiNtv5QbwsM3t/M0OnjJ79DjZ2Yiw7R256Ig4sULt38MairyGr2w+i0rANPskKd9vAte8uenk8H2xYy83k70kdEuM3KtQ6S1ySsktKYFGTje7Nx2xuZJcTsTEYfzIwD+DRknR7I7Yz8WJE6OKPWH7UTHenrD7Qo+vnrRt87og7fUeDH1Jk79xg8dYedgVMvbtnHmwvSvoe+d+sQWI6w5EsxPbV6VHgpnx4u8LrOoQnHwVozEt4KmbS+siTW/ehEdozlP9rQzES+yfpsFAGeXU70QR79+hAgP7uY+zzw5orzhlgqasFdYelO9grGdABfnH46/ymCqBRTEi6kRQ9dM16VOl2Iur6itsY9Gcwot8zhL5qcceWFnVTlerK3ITRn+CaHItxLdtnoqamc7o/PkyHYSLwD8mzLihds1DsPg7g77yDWTkeqFvG7AP1UQXuG4HPi3vX02JrczLlUSL/zTRu6JkbYtjxfaR/WBFM1P+cVTxQvZRyYvmTSvToi2ttI1DUe1M2eeFF0jEmkDJ0cA/Bsy4kXGCZKghCEvFhi9yxP6fnDSQOLw0Cvxxy728MYUdOh7qxn58cJpeNDMPdWL4IvBgljyS/b8FK22ixd2qyJdqX8yKLyu0pk7kUmWl5JktFYdpvbLEf+6FjftuidBStuZGbky2xlvA5d2AvhH5P1yxOJ2AL1/yWLi2ou555tuZjHHB/eaAu/auOVMgx51ZMV7Hcp6tcMRxYvCkyOFQxlL40X8NEd6for5Zw0uMjl2V+pVSrRuMPck9yn11gAAGodJREFUSPCFRGtT3wvzVvhqkGNK25kZL/LaabaBdAHgX7EnXjh7RbtYb5mvnwiSh3YZ3nJbrbZzfpyqVi/64CLM46+90IZjhRWrP06HGyteZNSM5uG22fMze3bETnpFvvNvVvFjqe3C/DPzFACOq17gU9qZLsKLZv6FfnvPxJ7HPzJDAWAciRc4If9yBxxDnnsEgMtGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQWU68UG7nU+VOh0PkTt+Fd0swn801OPf7XJ7X6v1vwo5niiLj5pL/2i0xuO0EABRJx4vwDt/TY8bDMJB+aOmJbhq9PHjcfDzX9Hz4tt8yxdA16ZHHb/UdPiIiuF/5zv4oPnx/NtfvofOmLi7xDBb9cWMlUxNrZNlzYLXFpLaHm2YCQL5UvJj3qd4+eOiatj9qZ7vjQeC2NacogUVNPG0fvK5OiZkPlueHyUdluQ/3sgebN0X28PvWfxR47YSRmrrsoWQ+NjT/IaWVG2ksJrs9PPIDAHIl4oV3uL8+ddPpRvfsbdevpR871rfTA83M7tp7TKd5gCmPdZ2+z2xD/KmhTde1bifUtu1xTxErHv7RY9k39uQScVpmz1jzybrRsof/DHS7kXa0yXgeeqw91vPnAQBCxrUXqWd37t3DTrt6+4yK/1jx0SipO51ev74YFM3n57QuxfO2aVIRKdbPTT3Q0g9N/WhfO16khr9N3SnihTn26BJRhhO8HKaL9DmzZRX0yjZ2I5Uxh0PQm5Noj3wAPfECAHTFvxzxD0oT59ijg7HqDFk7d3GpXVjEludLpgHPYabtlxJM7ARIquOc/meeIfXjRWL4yziqXw8QH7vd3UrGuiH672h3bl+TEW2kX5yKh+CyeMH5EQDIc5bqReQ8eVa8CPfx8aK30tFtPZJdRk8el8+XlC5dWu14ER/+icJFauw14kVedx6tDkQbubyZU18ojBe78zQAfC3peCG6g/T1EhkDnOoIx1Qvwq9FfuMRnHMZ137J7Bxz4oV7JuYU8SI2/BNli+TYPy5eLH/Fqhd6I91RmEMwpoB4AQA1JONF+tem+6rFHxMvRH/gdW3xyxbS117Mn9quNawfL6zhny5bJMeeHy+MgKb038mzbda1F0Yjj7n2ItEeTo4AQJaSay+Grjk0bdvIXnRXP/dB8WLo+8FJSBnHxYkGzt8N3iqPF3ZPFR++VfJ3M8cx/06PPSteWOUfrT/P/GGq8260kdFTXqlfjkTbw09HACBPXryYOmjnIn3vtEPbrx9Jcg/AP6R6Ma5NbdvlctDtutBYGcCuX6TihTglk1FWKRi+dinMtgQuJl7YXbz2nWTYK51FOZE3spiM9gTp4lQVJAD41yXiRXgR5vHXXmjDkWGlVPTai6CokFtmOOmJ9n7fTUP+DfE596+eYfDa/a9OBAB8iJKTI19QcBeNaj5zukj2vCe4Gdjp+Y3OrJAAwBdFvMA5DDzSDAA+M+IFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKsuIF2+399dXD09/xMu/7q7ur6/ur29/xb/+/vhwfXV/ffPzfXcjAQDAvyQdL/4+3dxfX728+a/OoeFKeWtUP0m8AADgq0jEi6VEsfx3ePw7juP4+jIlhrcpOvgFjLdb55NhvPjz85ARSgAAwD8rWb14ffGywp+/Sz6YTpdMtQ0vYRAvAAD42jLjxc3D9dX93euvp5uHa7+esf23BAjiBQAAX1sqXrw/PlxfPdzdTvFifH980K/lfH2ZPjASLwAA+OpS8eLt9v766uXpcY4X81UXy393jz8PVw9Prz8PzvmRKV6k/iNeAADwWeVc2rlcwrnGi+0fWrwQ+OUIAABfTNkvRx6eHokXAAAgLu+une/5J0fmD2znPsJ4MZ89Sd2PCwAA/Jt2xYtY9YJ4AQDAV0e8AAAAle269oKTIwAAwHZk9eJ1HMflVhbECwAAMI6nixcZ/xEvAAD4nPbFi9uX+VzJn+WZI8oT201ULwAA+NTy4gUAAEA24gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBdAib5tusH5e+iaQ9ufrTkAcJny4sXQNYesfWjWvnbommkP3bfTh+X/mp9WrXv79ZOOvj2kWt63h+BrOy2Trzb1VH2QuXDK5nMZZ6Yt/0zNR23x+G+Xz6P8ZZefAoauiQ5UjNMccN9u0+NNu/uGMYiM6Uo10/9kfNqHrnE3JGUNOeW6BOBTyokX084nxulp1n2N1sW6b7b99P+37wxdo+ypgh2b/q62k55eSe28/b+OOBgNuo2PMHTNoWms/qNgPpeOdB3E9kffOn2UlQb1NSJvHZMJpaBvqxcvRCtiA17XiPUry8CHIRZQMqfLWuFyZv08O/3tN9qAE61LAD6pZLwYukbZ/VgfXfalh6brxAHYuhNVe5K2D15vut59pW0j1QuxQ217vxMQ3dIJ4sWuY+/jrR2M0tPkz+fS0k1kjkUOu+3qRcE65k6oEUnmAaUDi7G4zHghe+3p+9oKkx63s5YmX/OjQMZAk+nEW0pG0S+or2ijOn5dAvBZJeLFvDOP7NvcLnw9hp17fD1eOIN2d/HO570dXm71wns7OH5r2nYbZvV4sY47cQKgdKCHtlvnfDhcr1hg9oq58zlbkKT6dqqfyJUifRC9nFTJXceW8S39bdB6e+kllqsztPWf/vy1hmbEi8SMXb4lz5qExbZwWCWLLeMUijM4fYnJzariugTg88q79mLbjfg7P3FqItm5LN/s28NhKnAsnx+6tnH3cso43FeNerJTv41NRarf21uFmDpKu58s2//OM2mbvfKMvzM124F0GOEy53OmeeqCyUwPKNEBZaxjxtCsbwbtttvovuvMaiNgGOeGZOPsFWELETJeNI2MA+H0Jy7MyKxziOLgsqKshwiyNnOCdQnAZ5YVL9yDlGFQrupzP+lECL16sXWH06fXDmu5Jj8sJ7g7Nr3b9oOFkx/cbkDfKRvVi9xqdHDQGw5+337XP98hOr2D1ynJA8w98znL0DWHpm2D42v1TH0WZXVJrGPyfP82Z2ITFI0X8mSBfwWJ+Jp4KVowSa4QYfVCfiKcKGPWynEpK6Q2g9yP9Va8OMW6BOBzyzg5kt3Fxs45BLthZa8872q3Ly5jT1cvvCzQdF3rfmXdI2qnUfJ/CZAxnz4gXoT9XfiK22PkzOeSNs19izfIjCH1rbNYgrfy17F5UG0/+N/P64H1YSprph82wrNubbd+KH4+RucvVuUdP0yGS1e72EMu5b4PrthQ2rnOqXmVMKsXxlj2r0sAPrec6oW77wgihLfvcfdj5skR5Q23ACCrw0ssGLpGr2A4Ozy9enHyeCFHoLy5g1m9iH7Of71gPudTz0ylyvVrRcgptRvH6PY6NoYlgWmQ8mYUQuQqinBq1PNQ6yWX0zmFthuWpOd/X2wRWshLVy+8d+T6k3HNSZBr5re2NcI5ETRflTR0jXX1tL4x11mXAHxaGfHC3QMOw6AWUxWR6oW3M/Q+p/QD3m42djZm3I4t24+uXrgNFc4WLwrncz5lDnltCE41yFM5h6DB2etYGDbW4BLLD9vA5efCxRPO6Wnqlk9Gy3DG0jZXKjteGEPUl3Y831ljn173r2KxqhcnWpcAfFoZ8SKj0ByUMKarIYx4MfS9e9lbUHkOjta28qsVL8Rx2QdXL7yGKrMvNjg7HBwdL8rmc2arRrs6H1xfOXc8WsFB6cAz1jF/UfnnLYzlpp86ii0Re06r35enD7ZTJjnbTDJeBOnFOgPnJqjkzJwa0LdzUSYYZHhGpmBdSq9eAL6ArEs7Te5eSJ4Cj197sdUZDs6dK9ZT4f7h71yQ7vVuSD05ol6uIS7pSO36C+2KF5G+7vjqxVgynzNbZb67dvZrycgpVk3J8OCsIUtflZzVzvxz/qk2XlwnIWaN6HajF4HujRdWFSFWvYivec4Qe/MOtOYqMH2l65r5J85GDSMdL9aBJdelYdtUqWkAX9meeOF0z3bvZJmvn0gczk67+OWXc23n/Dg1cXJkjRfTZRpN51zflpUaKlUv/AKKafepE28Q9rUXWfM5WIY7I5EeGYblVwbpSRGNN9axIEXIL7qXd1h5IuhU3ZU22tZg8r0RWSFY3xb8yo53SkI0Jqhb+BuZUjzYXpaXvPhfyYkXResS1QsAI480O7MK6eIELrNVAIB/B/ECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZTnx4s/Pw9X99c3P9+WF98eH69tfy19/n27unT+XV65e3vIG+HZ7f3318PRHfOjX3dX99ZUYcjic8IsAAOC8dsSL6c+r+7vXcRzH8fXl+srPB/PnX+5u7q+vnP/WoOANUM8i748PyxeNmLI0I5ZjAADAGeyqXsyR4ubn+xwOlqjhvHt4/LtUINbu/+/Tzf31zc/3bYBLiWL57/D41x3+2xQyrALGkjDmbwEAgIuQiBdzelj/u3tcawbBf97Jjvu71zCXhPHCzSLjOI7vf/4uoWEqhywNMBLGUuTgFAkAAJcjo3oxd+Fu9WIcR7VuMY5LxeLh6Y9b5HC+osaLm4frq/u7119PNw96dlEa4DUjdokGAAD4UBnxYqpG5MYL51IM5/qJ6RTGrzBevD8+XF893N1O8UJcNCoHG0QZp3lcgQEAwKVIxov1CsqseLGeTHl4+jN1/C9vS/1DjRfTZ54e53ixpBP3XMzD0+vPg1mf2K7e4AoMAAAuQype+BWIl7fgagz/qsy1s394+vPrzitR3N+9Gpd2LpdwrvFi+0cyXnhxhAIGAACXIBEvnF92TCFAXEihVC8eDjf311cPT49Lx3/7a7nYM/nLkflb2fFibYN1IQgAAPh4OfHi5kH+MHUcrWsv3l6nMPFwd/uwBguv8iEu7RzHcStvFJ4cmT/88jaGl5ECAIBzSf8wdendc385Iu7CudQn1ptkZMSLvOrFPOS1AVOU4QoMAADOLXXtxdvrL+W2WuOYHS/cXr9mvFB+z+LdMAMAAJxL2V07zes63d9uePFi7vKniy5zr71InxxxT4s4jFt0AACAj7TvpuDjmFe9mD8jT1jkVy9enc+v8WK5PkO7kJO7bAEAcHanjBfz+Yuwp/8jqxEF8SKWLSYZj1oFAAAndLp4MZ3mUC+YCK6QkPHidr31p3efrvByzliD+Z0qAADnkRMvAAAAChAvAABAZcQLAABQGfECAABURrwAAACVES8AAEBliXjxHwAAwH///ffffzXjxf8AAMCXR7wAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQ2Vnixe/nb4fD4fsP/9Uf3w+zb8+/0wMp/DgAAPgoHx4vfnw/HL49P38X8WJ6+ff//jeHD5k9lMHMH/n9/I2AAQDAJfngePH7+dv3H/+b0oSbIH58dyNCWWIgXwAAcFnOdO2FiBfun9OZk3T9whoWAAA4s4uJF9+ef8/BYv5XZmJwzqoAAICLcDHxwrtGMzde/H7+RrgAAODSXEa8EFdz5l1NQbYAAOAyXUa88M9xZF1MwUkRAAAu1UfHi+1uFbM1RyyXdGZd1RkMhos7AQC4GNy1EwAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwAAUNlZ4sX09LL8h5CVfh4AAJzTh8eL6UHqzznPXN/1eQAAcG4fHC9+P3/7/uN/U2jIiQulnwcAAOd3pmsvSuMC8QIAgH8H8QIAAFRGvAAAAJURLwAAQGXECwAAUNlHx4sf3w++RGgo/TwAADg77toJAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACo7Czx4vfzt/DhZNvDy749/04Own3UWc7nAQDAh/nwePHj++Hw7flZPmD9x/fl79/P38oCAw9rBwDgsnxwvPj9/O37j//FI8GefEEBAwCAy3Gmay9i8aKwGvH7+RvFCwAALsnFxYvp5ElOLWK9/ILSBQAAF+Wy4sXv52870gIXXwAAcFEuKF7syxbz0KhgAABwMS4mXuSfFJF+P3+jegEAwAX56Hjh3q/icFjvfhG8nMgL050zuPYCAIBLxF07AQBAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlX18vNieXpb9KLLpAWb5D0Ut/TwAAKjpDE9Mnbv938/fcgLG9KD25+AB7rU+DwAAajvjyZGcfPH7+dv3H/+bQkNOXCj9PAAAqO+M8aIkApTGBeIFAADnc7Z4MZ3EyLz4gngBAMA/5Dzx4vfzt5JwQbwAAOBfcoZ4UZwt/ke8AADgX/Lh8aLspIj7LeIFAAD/hg+OF9tNLxaJEBB8ofLnAQBAddy1EwAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJVVjhcAAAD/VYwX545KAADgUlSLFwAAAKWIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqy4kXf34eru6vb36+Ly+8Pz5c3/5a/vr7dHPv/Lm8cvXyljfAt9v766uHpz/iQ7/uru6vr8SQFe+PD9d+8wAAwFntiBfTn1f3d6/jOI7j68v1lZ8P5s+/3N3cX185/61BwRugnkXm0HAVjSnuJ4kXAABcil3VizlS3Px8n8PBEjWcdw+Pf5cKxJoP/j7d3F/f/HzfBriUKJb/Do9/3eG/TdHBL2C83TqfDOPFnH4SoQQAAJxMIl7M6WH97+5xLl0o/3knO+7vXsNcEsYLN4uM4zi+//m75IOpHLI0wEkYxAsAAC5bRvXCOPug1S3GcalYPDz9cYsczlfUeHHzcH11f/f66+nmQc8uQXwhXgAAcKky4sXUnefGC+dSDOf6iSkQ/Arjxfvjw/XVw93tFC/ERaNysNO4iBcAAFy2ZLxYLuTMixfryZSHpz9TDnh5WxKAGi+mzzw9zvFiSSfuuZiHp9efB+f8yBx3Ev8RLwAAOJdUvPArEC9vwdUY/lWZ66WaD09/ft15JYr7u1fj0s7lEs41Xmz/0OKF3kJ+OQIAwKVIxAvnlx1TCBAXUijVi4fDzf311cPT41KHuP21XOyZ/OXI/C3iBQAA/7KceHHzIH+YOo7WtRdvr1OYeLi7fViDhVf5EJd2juO4lTcyTo7MH9jOfYTxYh5p6n5cAADgNNI/TF1699xfjoi7cC71ifUmGRnxIla9IF4AAHDpUtdevL3+Um6rNY7Z8cL9oQfxAgCAr6Dsrp3mdZ3O1Z1+vPB+Jpp77QUnRwAA+Jftuyn4OOZVL+bPrPeosAZoVi9enc8TLwAA+DecMl6Y3fwf+UuQ8niR8R/xAgCA8zhdvJhOc2hPI1vvu7WS8eJ2vfWnd5+uTFQvAAA4q5x4AQAAUIB4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKEvHiPwAAgP/++++//2rGi/8BAIAvj3gBAAAqI14AAIDKiBcAAKAy4gUAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAys4SL34/fzscDt9/+K/++H6YfXv+nTuQw0EZEgAAOKcPjxc/vh8O356fv4tQML38+3//m3NDIjH8fv62hhD33wAA4Pw+OF78fv72/cf/pjThJogf392EkAwMv5+/uV/3vw0AAM7rTNdeiHjh/rmc9IjVL8TXRdoAAABndTHx4tvz7zlYzP+K5oUwjxAvAAC4FBcTL7xLOjPKEduVnd+ef1C9AADgglxGvBBXc5ZerPnjO+kCAIDLcRnxwvvlSPhm2aAAAMB5fXS82G5uIe9ZUXYfi8KbZAAAgI/DXTsBAEBlxAsAAFAZ8QIAAFRGvAAAAJURLwAAQGXECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVnSVebE8v859HZr0eH458AFrh087KHqUGAACSPjxe/H7+pvbj1uuW6Qnuz5EHu+cM8ffztzWEuP8GAAD7neGB7GoXbr1u+P387fuP6WtegvAHkwwMv5+/uV8vbAQAAFB9cLz48X0uOYizF9brGcMT+WD9cznpEatfiK+LtAEAAHb5+HjhdOhb7269njO8oPwwB4v5X9EBhXmEeAEAwLHOUb34Hf5pvZ4xPFm9cIsfGeUI93LSH1QvAACo4AzVC+1iB+v1wuGJqzlLL9b88Z10AQDA8c5waaf6Uw3r9YzBWb8cKTjHUv5pAABg+vj7Xjj3mfAyhPW6bru5hbxnRdl9LApvkgEAANK4aycAAKiMeAEAACojXgAAgMqIFwAAoDLiBQAAqIx4AQAAKiNeAACAyogXAACgMuIFAACojHgBAAAqI14AAIDKKscLAACA/yrGCwAAgFLECwAAUBnxAgAAVEa8AAAAlREvAABAZcQLAABQGfECAABURrwAAACVES8AAEBlxAsAAFAZ8QIAAFRGvAAAAJX9PwMas3fzNR+CAAAAAElFTkSuQmCC" alt="" />

--------------------------------------

每次的可能性公式如下:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAJoAAACCCAIAAAAxGEa2AAAN9UlEQVR4nO2dIZSqTBTHb6BQCBoonPMdAoVCWAOFYrBYLASLhbAbLBaDxWJwg8VisFgsBIqF4AYKxWChGHyBYiFQKJT5AsoCouKKisivvXUeIn9m5s6dO/cCKsgR8OwbKEiTQs5cUciZKwo5c0UhZ64o5MwVhZy5IiNyOgtZ/myJHuO5eqm9O+hI+8bTuaqtvL+uNFVbGfe+1yyTETkRQsi1dxyFA0C11TvfUhl3AQAAhnPN/+NmOQMAwAj9n33nO80uWZLTMsoYAABTbZ1pZq5/SjgAQJmtuYG/b7Q5Vsj57Bv4RZdHBEEAAM5UTzZyLIGlcRwAoNWbRD5caaq+3tz3LrNNhuTstapfX58AADhjnWjTl2pNScIBAEDWzYfe3yuQHTltjiRXugoAANhqF9NCl0cM31CmAwDAyqzlxrR5c66Wc7PWx8O+KIocQ0EAhuNFURyOp9HhzrUrFH6xJ+1WCsWLyNmUAQBAOdLTNtc0RekbqyPyAMCLHf8LVEVuS01RFFmaHMn6tb8oTySW07Wno8EHSwcl5PiqeCD4EcVwvcFou7ORY3VadQCYLNbnLz/tS1+DGUIOVwYAGCur8OeOyDOD2Q9yLbaMAcBg9hP63DYIAMDKm/c1gxBKKKc6HzNUyVerKn4qqhbTzrWV2UT4YOGI73lc+wAiT3k9ss6VAaA7VoKfTvuS0OwihExdBgAAfLULDbW7lXLRJH4HLsjpWKbUEH5H1EpNN7YXL7qUJzRJBOWMyBPBtdZl8sNBCCHUblQAQOyM/E83ukzRFdN2EULTvgQA5EcjcoXZ4AsA2sP5xXvLN+fktMx1hSZ9SWrNrpP4upZp8Mzv//0azM401uZD33Xw3W4Ep0bH2nI0pej7+bjxQQKA1J9GriDyFACmGqcs4nfhpJz2zuACAyxf/0yupX8F9tBHg73tmG5T8P078+82AFC8iBBCyG03eP9VcK01EbdEcXcrHACn+GvvMH+ckNOxqtyv4UpQnDfWXctanWLedHvGb+daLEkah2WHNv8GAIziXYQWkx4rNH2RtPkwdomiTvsAUP8a/OEOc0a8nH2pFpz5brH+u00BALj616kGpi4f+iJCCP3T5gAAGLVaaxRFr81fU9W7lGcTBWk3PuKM4XckRs698/MAydZuGcTsfzqBAS00TzWY9qXgXOiaOgYAgNE0PVYCr9GpJYpjUjgARm6LoTZOTlfkQ4vL3mRx43e0GxWCrZ340K2x5bkWsJZdk8IAAGpSP9ju1BLFUKf+EmU06P9pTsgPUTm9p/MLVjZudqatFxMgK7FX+afLGODrkEHq8hRWYngr3Nu8kRYwOuIuGnVEz9SSR72p+u7jbVTOzzoXVPPMIHkFrsWQUa+6vlxMx0PPO8HXW7Ks+B1LFFh1vbddLXMjy3LvU/Rvqd7qyLLsi+0tbAAvTeRlCrf64oTk9HccfY43oTKHY8myvN29t3PvQEhObyWQlk1b8HhCcg6+6hE5F+t397O8FiE5RZ4Kq4kXar4WQTndChnpnFSx3/9aBOXc0WE7CAi2MDBei6CcZmSoLeR8OQo5c0VQTovBw3IeuWAKMk7IshWik2dh2b4YITmlWjTMp1h3vhYhOSe9VkTO4aWQrYJMEZJz8zOLyFls8b8W4R2Vwxbx7+RZBOC8FNENsv1+U4DiKMgLEZXTiwUJEjg+8Hd2hjaa3RrVUHCRmFihcbcZWa4s1jd1UNfeCSxZhGY9gBg5XdvkqFAMO8VVrT9Poa7dqlVS6eIFF4kPzNzoSmTIFRrtPwnqdMRqia5s//46ZBTX3i2WmdvbPxkFr84GEReR0JB21wTKufauWatgBKkZz/MVWpsSfkUIrrlSMMCXm7POE9f+UVWeKQXDgzPCuTMqi9kg4sQlaXa2SPRKGvqCo0mMIBf6k0+3LxfyFW+hayvyIslI0pdqLyYnQmj9I0fOggEAw/GjySw+2sq1FXnWED4AgKQ5zcjtIucl5UQIOZbZazcjA68HRpBigMB5bKzV6T99ulwu5CpHJQ9G1JcLqSGcOX8R5FXl9NhtjUGvw9LR8JMIBEm3u31jm5GNNYen8NnPfrSfjXpiHPLy92S4VGPPH0X1eW05fXZbQ5blQa8TfCKtz44sy1lLAmMZKobTu+TWm2NSOPaT7Dx+TuR8IZRxl61JyduvlDHBVD31L3blQs5H81XngsfrkyjUaA8TXryQ87G4Oxq/avvd4Sl8slhv//1L0rqQ86FstTl2SJ+RBNtQAbDBeGaYid4AqcYS9MfTrfcIuZVz0mtFTohewLWVwMG0801VRfbJlKK5lVPkaVlPNGzmibzJOR/3B6PJfDKgWEG+G5lZWEfJm5yL2Yj5r3Te13E77e+M5qPKm5wIoe1KLeFRAT6EWuwqJSHBHHYA0OyOn/0r48mhnAihn9kgIicriDdmwdis9Yawj0O+mN78WeRTToTQ8CiGLbmL4DTOZ52Hs2mSnktu5USuLQrRoP7+9GINiAs41oYmMLISzfGYEfIrJ0KOtWEjm7V4SV1dzvh5nu92A6OFVO4wdfIsJ0Jou1pEgp4IirsxcMlQp1DmsuQ8+CXncqJDAsY0zSLbIID8l8n0YvmXEx1ljIRLCVkv4aqKks1scW8hJ3LtBs9EFM3l4bj3kDOcK9k3i35ui+7PIBmSc7nwHKKBccyx1pvUnrihyRGzKH/x3JmQczbqkQQufnY9PT/FWk2U5rIsNYSpmmbFP78WnQ9Xbd1ZT2chy355hItztn+ihKTZQPFDd9RrS+3uxXfv+XJ6xRciM9ly/o3BXeqiHJtFD3HAugKNQ4LjeF7RH8AILRCJ75UVgQQZtZ8sp2OuCAz8gKsg7UalzNXv8JVWrUKHBcVG8n3NInvz4w3z5+NR/DVVJGLNtU2eIQmSXl0qfvhkOT1feWwuanXav9NRfttc0+E9l3sfpJFHHYZh4FCyIJadoVEU5d1XwljfYzIhJwCuHj1NXR5F076nh6HNI3topUPlnXsg1djv7yEAAEaZsV/iWFWO/v72ngam/TWx/dMHW917rHSlFpnnDU25OLbcgjzqRCbRSk26i1nkbMkys9t6JQtAi/MnDdsNsTOaD9sAsVNPUsfF800hP4kuV20+2NWyzy8f4Lh+0u2sFxNe7PglC+ZaNIJptZjQXNVyUFOgQ9avY8nzKc/SAIDTQpJn83w5kWs3q/sE9Hy99dB1YLj6jzfQhap9pMHgq96fql7JAjiqrmfvDIaiNGOH7I2XNSayNtPlESTOCJQBORFy7V394IR7cB+1tquIWZR2pIHDUyXddNAh+3M4zshpVTmvtMlKGQMA4JQZfqG9ffiEJ44zISdCyLFMgd0fTxPEziMH3ZU69fUkWSHd4cEyVPKw3PLG9mA/mw/bfKPt/VhvQXwU5+BWGSJ5+ZOsyInCbtXB7LeKhudnSMKfUyB5VSbxEr3appyDUB51fDeFlxLGF2yjKxTtb746PIXDUREiZ6thl1arQZ4mp76YH9utG132OkrQgbA1VgnDX80/9SxNHmEAgBGylqZD0aNVZfwDpp6L0ftprm1WaGp++EbLUL1SXZElymLSu8pAe5qcvVYzdgf44OV6UCpdP4rzzyv3c9ibcpnxh8n97FjmHIS6TSF4LNxbNZXZWuSReNXyQkW9zvI0OWssvYnrS/vl4EMSXTvWtkKX4KjeWVqslPFHo+3/8+B6LU8mA4ZvBC2+VpWBYwe9azEEAMEkLxv2JDltgzgx1XkzJVf/vPs9HEL9bg/BPUVfqoXmQmvtTSV4OTxJn1iibLU5AARfiIs8R06vcF0l5kadGksC4Mrq7qeFvAUAQbLGnQpeuRZbxlQjePF9evaI89KrQAtQigxXXnrhqyo0PkdO31httgeBnuF+t0UAfHD/ZIz7vYs04jRPoYy7ALgeXkVWGTxaTtZ3ZWDkJjxKND7Ia/23z5Gz+9na7GzL3IyH/Uaj4Z0DYVm2KbVXCSrf34ifou5O4UJe8UM/C0gwvmI86PmO/n3xw86nfxJGanflw4FRr9B3Qt+eT4bWnY/BX93eFsx3d7zyftfe5JvJedi7vtfmSXr0WlW4mB3wiPeS03OklRj+qlyRT8DZMWXsD97jN5LTW9E+OYPnaVbqFAdstjQQQtO+RDL8H7bT30XOQ/gBnlZ9bFOXz0SK/IHlbAAYMZzMulKjKn7+zWH5FnL6u2Bfg1la15z2pdTzCunLhSzLm2SZcGJ5Azkdy9t6S3PfzbUrFH4n1+At5F5OtyMKEBeLdAveNNwZyaldMSVyLqfnfkp3I1NTJkScizUL5FnOfZhBehuZmqp0Wn61d0yPj7F8JrmVc2doJIEBQIlibklB41ETPqKhD6ciZp9KPuV07R3P3DdZVGzk/tPJpZyOVKvcVUtIqZZX6uRQzqOiW3fhHgHWt5NDOXufl+fC21HuECd2OzmU850p5MwVhZy5opAzVxRyXmZrrFJMoHJX3lTO5WyAEbR5ySm/226U+QjPpLc9ljeV07FMRU0YxmezRCFnfijkzDCOZc6nIwJLXgCpkDPbmLqMlbnDYQPrhBOpdZhZCzmzzbQvRU8WnKOQM9s0BfqapPCFnFnG3pSx4DmeYrB9ZYI1V5NRyJlhhu3GVQVVHMsgsVRqsDyCd5PTrTJE8gg8e7f182gslimnj7oH7yWnY+okzWf8uNEtvIecrt1utUwHjbrSLKUzKtnkPeRETq/Tmc/nDzja/VzeRM53oZAzVxRy5opCzlxRyJkrCjlzRSFnrijkzBX/Ax8y2QFArAY5AAAAAElFTkSuQmCC" alt="" />

AC代码:

  1. import java.util.Scanner;
  2.  
  3. public class Main {
  4.  
  5. public static void main(String[] args) {
  6.  
  7. Scanner sc=new Scanner(System.in);
  8.  
  9. while(sc.hasNextInt()){
  10.  
  11. int s=sc.nextInt();
  12. int n=sc.nextInt();
  13.  
  14. while(n-->0){
  15. int a=sc.nextInt();
  16. System.out.print(c(s,a)+" ");
  17. s-=a;
  18. }
  19. System.out.println();
  20. }
  21. }
  22.  
  23. public static long c(int n,int m){
  24. long a=1;
  25. for(int i=0;i<m;i++) a*=(n-i);
  26. long b=1;
  27. for(int i=2;i<=m;i++) b*=i;
  28. return a/b;
  29. }
  30.  
  31. }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=872

NYOJ题目872开会的更多相关文章

  1. nyoj 题目2 括号配对问题

    描述 今天发现了nyoj,如获至宝.准备开刷. 括号配对问题 现在,有一行括号序列,请你检查这行括号是否配对.   输入 第一行输入一个数N(0<N<=100),表示有N组测试数据.后面的 ...

  2. NYOJ题目27水池数目

    --------------------------------------------- 这道题有点坑,也怪我总是有点马虎,按照正常人的思维0是表示有水池啊竟然是1表示有水池,最坑的是写反了竟然还能 ...

  3. NYOJ题目20吝啬的国度

    -----------------------------------------n-1条边的无向连通图是一棵树,又因为树上两点之间的路径是唯一的,所以解是唯一的.(注意并不一定是二叉树,所以最好采用 ...

  4. NYOJ题目28大数阶乘

    -------------------------------------祭出BigInteger AC代码: import java.math.BigInteger; import java.uti ...

  5. NYOJ题目198数数

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAK1CAIAAABEvL+NAAAgAElEQVR4nO3drXLkurvv8X0T4bmQYF

  6. NYOJ题目170网络的可靠性

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZy

  7. NYOJ题目168房间安排

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAOTCAIAAADGwNmiAAAgAElEQVR4nOy9PY7cyLPufTchXwsZu9

  8. NYOJ题目125盗梦空间

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAANLCAIAAAA4rUfgAAAgAElEQVR4nOydq7LdyrKm+yXM/SDG4y

  9. NYOJ题目124中位数

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAssAAAJUCAIAAABsWvwaAAAgAElEQVR4nO3dPXLjuraG4TsJ5xqIYw

随机推荐

  1. 元素间距属性(scrollLeft,scrollWidth,clientWidth,offsetWidth,padding,margin)

    scrollHeight: 获取对象的滚动高度.scrollLeft:设置或获取位于对象左边界和窗口中目前可见内容的最左端之间的距离scrollTop:设置或获取位于对象最顶端和窗口中可见内容的最顶端 ...

  2. EasyUI中Dialog的使用

    $(function () { $('<div id="dlgContent"></div>').appendTo($('body')); $('#dlgC ...

  3. 利用LruCache为GridView加载大量本地图片完整示例

    MainActivity如下: package cc.testlrucache; import android.os.Bundle; import android.widget.GridView; i ...

  4. HDU 3743 Frosh Week(归并排序求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3743 题目意思就是给你一个长为n的序列,让你求逆序对.我用的是归并排序来求的.归并排序有一个合并的过程 ...

  5. [KOJ0574NOIP200406合并果子]

    [COJ0574NOIP200406合并果子] 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆.    每一次合并,多多可以把两 ...

  6. MikroTik RouterOS防火墙与过滤详解

    MikroTik RouterOS能对包状态过滤:P2P协议过滤:源和目标NAT:对源MAC.IP地址.端口.IP协议.协议(ICMP.TCP.MSS等).接口.对内部的数据包和连接作标记.ToS 字 ...

  7. NOIP2015 斗地主

    Sol 暴力搜索...不用搜1,2张的情况,直接统计出来就可以了. 还有处理一下2和大王小王的位置,扔到最后面或者最前面就可以了. 搜索就搜 3+3,2+2+2,1+1+1+1+1 这三个就可以了. ...

  8. String封装——读时共享,写时复制

    碰到过一位一直怀疑C++标准库(STL)效率的人,他说STL效率太低,企业开发根本不会用.我是持反对意见的. 说这话的人,肯定没有做过大量的调查.没有调查就没有发言权. STL的效率是不低的,足够满足 ...

  9. Weiphp随笔,百度天气API接口

    新建插件名必须大写 http://api.map.baidu.com/telematics/v3/weather?location=%E5%8C%97%E4%BA%AC&output=json ...

  10. Docker内部存储结构(devicemapper)解析(续)

    dm.fs 参数dm.fs可以指定容器的rootfs的文件系统,但只支持ext4/xfs: func NewDeviceSet(root string, doInit bool, options [] ...