codeforces 613D:Kingdom and its Cities
Description
Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. However, in order not to lose face in front of the relatives, the King should first finish reforms in his kingdom. As the King can not wait for his daughter's marriage, reforms must be finished as soon as possible.
The kingdom currently consists of n cities. Cities are connected by n - 1 bidirectional road, such that one can get from any city to any other city. As the King had to save a lot, there is only one path between any two cities.
What is the point of the reform? The key ministries of the state should be relocated to distinct cities (we call such cities important). However, due to the fact that there is a high risk of an attack by barbarians it must be done carefully. The King has made several plans, each of which is described by a set of important cities, and now wonders what is the best plan.
Barbarians can capture some of the cities that are not important (the important ones will have enough protection for sure), after that the captured city becomes impassable. In particular, an interesting feature of the plan is the minimum number of cities that the barbarians need to capture in order to make all the important cities isolated, that is, from all important cities it would be impossible to reach any other important city.
Help the King to calculate this characteristic for each of his plan.
The first line of the input contains integer n (1 ≤ n ≤ 100 000) — the number of cities in the kingdom.
Each of the next n - 1 lines contains two distinct integers ui, vi (1 ≤ ui, vi ≤ n) — the indices of the cities connected by the i-th road. It is guaranteed that you can get from any city to any other one moving only along the existing roads.
The next line contains a single integer q (1 ≤ q ≤ 100 000) — the number of King's plans.
Each of the next q lines looks as follows: first goes number ki — the number of important cities in the King's plan, (1 ≤ ki ≤ n), then follow exactly ki space-separated pairwise distinct numbers from 1 to n — the numbers of important cities in this plan.
The sum of all ki's does't exceed 100 000.
For each plan print a single integer — the minimum number of cities that the barbarians need to capture, or print - 1 if all the barbarians' attempts to isolate important cities will not be effective.
4
1 3
2 3
4 3
4
2 1 2
3 2 3 4
3 1 2 4
4 1 2 3 4
1
-1
1
-1
7
1 2
2 3
3 4
1 5
5 6
5 7
1
4 2 4 6 7
2
In the first sample, in the first and the third King's plan barbarians can capture the city 3, and that will be enough. In the second and the fourth plans all their attempts will not be effective.
In the second sample the cities to capture are 3 and 5.
正解:虚树+DP
解题报告:
上次考试原题...
题目要求使得k个点互相不连通的最小代价。
考虑直接构虚树,然后贪心。具体看我的代码,不再赘述。关键是虚树注意有一些细节不要写错了。
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
#define RG register
const int MAXN = ;
int n,m,ecnt,id[MAXN],k;
int first[MAXN],next[MAXN*],to[MAXN*];
int jump[MAXN][],deep[MAXN];
int que[MAXN],top,Stack[MAXN];
int head[MAXN];
int ans;
bool in[MAXN];
struct edge{
int to,next;
}e[MAXN];
inline bool cmp(RG int a,RG int b){return id[a]<id[b];}
inline void link(RG int x,RG int y){ if(x==y) return ; e[++ecnt].next=head[x]; head[x]=ecnt; e[ecnt].to=y;}
inline int getint()
{
RG int w=,q=; RG char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if (c=='-') q=, c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void dfs(RG int x,RG int fa){
jump[x][]=fa; id[x]=++ecnt;
for(int i=;i<=;i++) jump[x][i]=jump[jump[x][i-]][i-];
for(int i=first[x];i;i=next[i]) {
RG int v=to[i]; if(v==fa) continue;
deep[v]=deep[x]+; dfs(v,x);
}
} inline int lca(RG int x,RG int y){
if(deep[x]<deep[y]) swap(x,y);
RG int t=; while((<<t) <= deep[x]) t++;
t--; for(int i=t;i>=;i--) if(deep[x]-(<<i)>=deep[y]) x=jump[x][i];
if(x==y) return y;
for(RG int i=t;i>=;i--) if(jump[x][i]!=jump[y][i]) { x=jump[x][i]; y=jump[y][i]; }
return jump[x][];
} inline int dp(RG int x,RG int fa){
RG int cap=,lin; RG bool flag=false,ff=true;
if(in[x]){//自己是的话,必须把所有有指挥官的儿子结点的路都堵上
cap++;
for(RG int i=head[x];i;i=e[i].next) {
RG int v=e[i].to; if(v==fa) continue;
lin=dp(v,x); cap+=lin;
if(lin>) ans++;
}
}
else{//自己不是的话,如果只有一个儿子结点则不用管,如果超过一个则需要把当前结点摧毁,并且等价于与上面部分断开了
for(RG int i=head[x];i;i=e[i].next) {
RG int v=e[i].to; if(v==fa) continue;
lin=dp(v,x); cap+=lin;
if(lin!= && flag && ff) ans++,ff=false;
if(lin>)flag=true;//!!!!!!只有在儿子结点有未处理的情况下才需要打标记!!!!!!
}
if(!ff) cap=;
}
head[x]=;
return cap;
} inline bool solve(){
m=getint(); for(RG int i=;i<=m;i++) que[i]=getint(),in[que[i]]=;
for(RG int i=;i<=m;i++) for(RG int j=first[que[i]];j;j=next[j]) if(in[to[j]]) return false;
sort(que+,que+m+,cmp);//按dfs序排序
top=;Stack[++top]=; RG int grand;
ecnt=;
for(RG int i=;i<=m;i++) {
grand=lca(Stack[top],que[i]);
while() {
if(deep[Stack[top-]]<=deep[grand]) {
link(grand,Stack[top]); top--;
if(Stack[top]!=grand) Stack[++top]=grand;
break;
}
link(Stack[top-],Stack[top]); top--;
}
if(Stack[top]!=que[i]) Stack[++top]=que[i];
}
top--;
while(top) link(Stack[top],Stack[top+]),top--;
ans=; dp(,);
printf("%d\n",ans);
return true;
} inline void work(){
n=getint(); RG int x,y;
for(RG int i=;i<n;i++) {
x=getint(); y=getint();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x;
}
ecnt=; deep[]=; dfs(,);
k=getint(); for(RG int i=;i<=k;i++) { if(!solve()) printf("-1\n"); for(int j=;j<=m;j++) in[que[j]]=; }
} int main()
{
work();
return ;
}
codeforces 613D:Kingdom and its Cities的更多相关文章
- CodeForces - 613D:Kingdom and its Cities(虚树+DP)
Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. However, in or ...
- CF613D Kingdom and its Cities 虚树 树形dp 贪心
LINK:Kingdom and its Cities 发现是一个树上关键点问题 所以考虑虚树刚好也有标志\(\sum k\leq 100000\)即关键点总数的限制. 首先当k==1时 答案显然为0 ...
- 【CF613D】Kingdom and its Cities 虚树+树形DP
[CF613D]Kingdom and its Cities 题意:给你一棵树,每次询问给出k个关键点,问做多干掉多少个非关键点才能使得所有关键点两两不连通. $n,\sum k\le 10^5$ 题 ...
- 【CF613D】Kingdom and its Cities
[CF613D]Kingdom and its Cities 题面 洛谷 题解 看到关键点当然是建虚树啦. 设\(f[x]\)表示以\(x\)为根的子树的答案,\(g[x]\)表示以\(x\)为根的子 ...
- 【CF613D】Kingdom and its Cities(虚树,动态规划)
[CF613D]Kingdom and its Cities(虚树,动态规划) 题面 洛谷 CF 翻译洛谷上有啦 题解 每次构建虚树,首先特判无解,也就是关键点中存在父子关系. 考虑\(dp\),设\ ...
- Codeforces Round #613 Div.1 D.Kingdom and its Cities 贪心+虚树
题目链接:http://codeforces.com/contest/613/problem/D 题意概述: 给出一棵树,每次询问一些点,计算最少删除几个点可以让询问的点两两不连通,无解输出-1.保证 ...
- Codeforces 450D:Jzzhu and Cities(最短路,dijkstra)
D. Jzzhu and Cities time limit per test: 2 seconds memory limit per test: 256 megabytes input: stand ...
- CodeForces - 115E:Linear Kingdom Races (DP+线段树+lazy)
pro: 从左到有有N个车道,都有一定程度损坏,所以有不同的修理费a[]: 有M场比赛,每场比赛的场地是[Li,Ri],即如果这个区间的车道都被修理好,则可以举办这个比赛,并且收益是Pi.问最多得到多 ...
- Educational Codeforces Round 12 A. Buses Between Cities 水题
A. Buses Between Cities 题目连接: http://www.codeforces.com/contest/665/problem/A Description Buses run ...
随机推荐
- vs2013怎么打开vs2010的解决方案
1.直接用vs2013打开解决方案的sln文件,vs会自动进行转换的2.或者你用记事本的方式打开sln文件 将版本号改一下Microsoft Visual Studio Solution File, ...
- H2 Database入门
H2 Database做为轻量级的内嵌数据库,功能十分强大,而且运行时只需要一个jar包即可,下表是官网的描述: 更详细的对比见官网页面: http://www.h2database.com/html ...
- mybatis 3.2.8 + log4j2.0.2 控制台输出sql语句
mybatis3.2.7有一个bug,使用log4j2 (2.0.2)版本时,会找不到类 ,导致启动失败,详见 https://github.com/mybatis/mybatis-3/issues/ ...
- Android -- ViewDragHelper
ViewDragHelper SlidingPaneLayout和DrawerLayout,现在这俩个类被广泛的运用,其实研究他们的源码你会发现这两个类都运用了ViewDragHelper来处理拖动. ...
- [MetaHook] Quake FMOD player demo
CFMOD.h #ifndef CFMOD_H #define CFMOD_H #include "qfmod.h" struct Sound_t { char *pszName; ...
- oracle 分组排序函数
项目开发中,我们有时会碰到需要分组排序来解决问题的情况:1.要求取出按field1分组后,并在每组中按照field2排序:2.亦或更加要求取出1中已经分组排序好的前多少行的数据 这里通过一张表的示例和 ...
- 实现解耦-Spring.Net
spring.net属于IOC(中文名:控制反转)的思想实现. 概念解释: 控制反转概念: 控制反转(Inversion of Control,缩写为IoC),是面向对象编程中的一种设计原则,可以用来 ...
- jquery插件之jquery-validation
equalTo方法: equalTo: function( value, element, param ) { // Bind to the blur event of the target in o ...
- C++类功能扩展预留五招
第一招虚函数 通过派生类来进行功能扩展是基本的面向对象的方式,这种方式大如下: class base { public: virtual ~base(){} virtual void fun() { ...
- 1020理解MySQL——索引与优化
转自http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html 写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性 ...