满足要求的最长上升子序列(nlogn)
题意:数列A1,A2,...,AN,修改最少的数字,使得数列严格单调递增。(1<=N<=10^5; 1<=Ai<=10^9 )
思路:首先要明白的一点是数列是严格单调递增,那么没有修改的最长上升子序列也是严格单调递增的,并且是满足要求的。
何为满足要求? 假设A(a)---B(b)---C(c)……是一个符合要求的不修改序列,括号内为下标,那么有B-A>=b-a,这样才能满足夹在中间的数能够修改。
那么本题在nlogn求最长上升子序列的基础做一些处理即可。
处于满足的序列中必须有a[i]-lis[x]-1>=i-pos[x]-1,并且替换的时候不是原来的找到大于这个值的最小的,而是找满足前面这个式子已求序列中最大的。
比如序列:1 3 6 6 13 2 8 9 10,求最长上升子序列过程中当求得的序列为 1 3 6 13 时,当遇见8时,我们不是变为1 3 6 8,而是变成1 3 8, 因为只有这样才是满足条件的,当时它的最长序列top=4不会变化。
还要注意的一点是lis[0]初始化为-oo,因为a[i]可以修改为负数。
#include<cstdio>
#include<iostream>
using namespace std; const int maxn=;
const int oo=0x3fffffff;
int a[maxn];
int lis[maxn], pos[maxn]; int main()
{
int n;
while(cin >> n)
{
for(int i=; i<=n; i++) scanf("%d",a+i);
int top=;
lis[]=-oo;
for(int i=; i<=n; i++)
{
if(a[i]>lis[top]&&a[i]-lis[top]->=i-pos[top]-)
{
lis[++top]=a[i];
pos[top]=i;
}
else
{
int l=, r=top, tp=-;
while(l<=r)
{
int mid=(l+r)>>;
if(a[i]-lis[mid]->=i-pos[mid]-)
{
tp=mid;
l=mid+;
}
else r=mid-;
}
if(tp!=-) lis[tp+]=a[i], pos[tp+]=i;
}
}
cout << n-top <<endl;
}
return ;
}
/*
5
1 6 6 7 8
7
1 2 2 2 2 2 7
9
1 3 6 6 13 2 8 9 10
13
1 2 2 3 10 6 6 6 6 6 7 8 9
11
1 2 3 4 10 10 7 8 9 10 10
*/
满足要求的最长上升子序列(nlogn)的更多相关文章
- HDU 1025 Constructing Roads In JGShining's Kingdom(求最长上升子序列nlogn算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1025 解题报告:先把输入按照r从小到大的顺序排个序,然后就转化成了求p的最长上升子序列问题了,当然按p ...
- 【算法】最长公共子序列(nlogn)
转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005 (修正了一些错误,并自己重写了代码) 最长公共子序列(LCS)最常见的算法是时间复 ...
- [poj 1533]最长上升子序列nlogn树状数组
题目链接:http://poj.org/problem?id=2533 其实这个题的数据范围n^2都可以过,只是为了练习一下nlogn的写法. 最长上升子序列的nlogn写法有两种,一种是变形的dp, ...
- HDU5748---(记录每个元素的 最长上升子序列 nlogn)
分析: 给一个序列,求出每个位置结尾的最长上升子序列 O(n^2) 超时 #include "cstdio" #include "algorithm" #def ...
- 最长公共子序列 nlogn
先来个板子 #include<bits/stdc++.h> using namespace std; , M = 1e6+, mod = 1e9+, inf = 1e9+; typedef ...
- DP练习 最长上升子序列nlogn解法
openjudge 百练 2757:最长上升子序列 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候, ...
- NYOJ 214 最长上升子序列nlogn
普通的思路是O(n2)的复杂度,这个题的数据量太大,超时,这时候就得用nlogn的复杂度的算法来做,这个算法的主要思想是只保存有效的序列,即最大递增子序列,然后最后得到数组的长度就是最大子序列.比如序 ...
- 最长上升子序列nlogn算法
LIS问题是经典的动态规划问题,它的状态转移相信大家都很熟悉: f[i] = f[k] + 1 (k < i 且 A[k] < A[i]) 显然这样做复杂度是O(n^2) 有没有更快的算 ...
- 最长递增子序列nlogn的做法
费了好大劲写完的 用线段树维护的 nlogn的做法再看了一下 大神们写的 nlogn 额差的好远我写的又多又慢 大神们写的又少又快时间 空间 代码量 哪个都赶不上大佬们的代码 //这是我写的 ...
- hdu1950 最长上升子序列nlogn
简单. #include<cstdio> #include<cstring> #include<iostream> using namespace std; ; i ...
随机推荐
- ZOOKEEPER3.3.3源码分析(四)对LEADER选举过程分析的纠正
很抱歉,之前分析的zookeeper leader选举算法有误,特此更正说明. 那里面最大的错误在于,leader选举其实不是在大多数节点通过就能选举上的,这一点与传统的paxos算法不同,因为如果这 ...
- C语言常用知识
跳出for循环主要有以下2中方式: 1.用break语句.如: int i; for(i=0; i<10; i++) { if(i>3) // 如果i>3,跳出for循 ...
- 简单的c#插件框架
插件式架构,一种全新的.开放性的.高扩展性的架构体系.插件式架构设计近年来非常流行,基于插件的设计好处很多,把扩展功能从框架中剥离出来,降低了框架的复杂度,让框架更容易实现.扩展功能与框架以一种很松的 ...
- AOP动态代理解析3-增强方法的获取
对于指定bean的增强方法的获取一定是包含两个步骤的: 获取所有的增强 寻找所有增强中使用于bean的增强并应用 那么findCandidateAdvisors与findAdvisorsThatCan ...
- poj3642 01背包
http://poj.org/problem?id=3624 #include<iostream> #include<cstdio> #include<algorithm ...
- PHP 不使用第三个变量实现交换两个变量的值
//字符串版本 结合使用substr,strlen两个方法实现$a="a";$b="b";echo '交换前 $a:'.$a.',$b:'.$b.'<br ...
- SSH建立连接的过程
1. 服务器建立公钥档: 每一次启动 sshd 服务时,该服务会主动去找 /etc/ssh/ssh_host* 的档案,若刚刚安装完ssh软件时,由于没有这些公钥档案,通过/etc/init. ...
- MFC 启动其他程序 变相跳转
尝试了多种方式之后都无法成功地在对话框程序中弹出一个单文档程序,然后我想到了这个办法. 如果直接在代码中实现某些窗口的弹出比较麻烦,可以采用这个方式来弹出这种窗口. 如果需要传递参数,只需将数据写入文 ...
- html表单元素的colspan和rowspan
colspan和rowspan这两个属性用于创建特殊的表格. colspan用来指定单元格横向跨越的列数:colspan就是合并列的,colspan=2的话就是合并两列. rowspan用来指定单元格 ...
- iOS学习32之UIKit框架-可视化编程-XIB
1. Interface Builder 可视化编程 1> 概述 GUI : 图形用户界面(Graphical User Interface, 简称GUI, 又称图形化界面) 是指采用图形方式显 ...