BZOJ3257 : 树的难题
设$f[x][i][j]$表示以$x$为根的子树,与$x$连通部分有$i$个黑点,$j$个白点,不联通部分都是均衡的最小代价。若$i>1$,则视作$1$;若$j>2$,则视作$2$。
然后进行树形DP即可,转移的时候如果不要那棵子树,那么那棵子树的状态必须满足$!i||j<2$。
时间复杂度$O(n)$。
#include<cstdio>
#define rep(i,n) for(int i=0;i<n;i++)
typedef long long ll;
const int N=300010;
const ll inf=1LL<<60;
int T,n,i,x,y,z,a[N],g[N],v[N<<1],w[N<<1],nxt[N<<1],ed;
ll f[N][2][3],h[2][3],ans;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void up(ll&a,ll b){if(a>b)a=b;}
inline void add(int x,int y,int z){v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
inline int fix(int x){return x<2?x:2;}
void dfs(int x,int y){
rep(A,2)rep(B,3)f[x][A][B]=inf;
f[x][0][0]=0;
for(int i=g[x];i;i=nxt[i])if(v[i]!=y){
int u=v[i];
dfs(u,x);
rep(A,2)rep(B,3)h[A][B]=inf;
rep(A,2)rep(B,3)if(f[x][A][B]<inf)rep(C,2)rep(D,3)if(f[u][C][D]<inf){
up(h[A|C][fix(B+D)],f[x][A][B]+f[u][C][D]);
if(!C||D<2)up(h[A][B],f[x][A][B]+f[u][C][D]+w[i]);
}
rep(A,2)rep(B,3)f[x][A][B]=h[A][B];
}
rep(A,2)rep(B,3)h[A][B]=inf;
rep(A,2)rep(B,3)if(f[x][A][B]<inf)up(h[A|!a[x]][fix(B+(a[x]==1))],f[x][A][B]);
rep(A,2)rep(B,3)f[x][A][B]=h[A][B];
}
int main(){
for(read(T);T--;printf("%lld\n",ans)){
read(n);
for(ed=0,i=1;i<=n;i++)read(a[i]),g[i]=0;
for(i=1;i<n;i++)read(x),read(y),read(z),add(x,y,z),add(y,x,z);
dfs(1,0);
ans=inf;
rep(A,2)rep(B,3)if(!A||B<2)up(ans,h[A][B]);
}
return 0;
}
BZOJ3257 : 树的难题的更多相关文章
- [BJOI2017]树的难题 点分治 线段树
题面 [BJOI2017]树的难题 题解 考虑点分治. 对于每个点,将所有边按照颜色排序. 那么只需要考虑如何合并2条链. 有2种情况. 合并路径的接口处2条路径颜色不同 合并路径的接口处2条路径颜色 ...
- [BJOI2017]树的难题 点分治,线段树合并
[BJOI2017]树的难题 LG传送门 点分治+线段树合并. 我不会写单调队列,所以就写了好写的线段树. 考虑对于每一个分治中心,把出边按颜色排序,这样就能把颜色相同的子树放在一起处理.用一棵动态开 ...
- BZOJ4860 BJOI2017 树的难题 点分治、线段树合并
传送门 只会线段树……关于单调队列的解法可以去看“重建计划”一题. 看到路径长度$\in [L,R]$考虑点分治.可以知道,在当前分治中心向其他点的路径中,始边(也就是分治中心到对应子树的根的那一条边 ...
- 【XSY2307】树的难题
Description Solution 看到这种路径统计问题,一般就想到要用点分治去做. 对于每个重心\(u\),统计经过\(u\)的合法的路径之中的最大值. 第一类路径是从\(u\)出发的,直接逐 ...
- [bzoj4860] [BeiJing2017]树的难题
Description 给你一棵 n 个点的无根树.树上的每条边具有颜色. 一共有 m 种颜色,编号为 1 到 m.第 i 种颜色的权值为 ci.对于一条树上的简单路径,路径上经过的所有边按顺序组成一 ...
- bzoj 4860 [BeiJing2017]树的难题
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4860 题解 点分治 设当前重心为v 假设已经把所有边按照出发点第一关键字, 颜色第二关键字排 ...
- 并不对劲的loj2179:p3714:[BJOI2017]树的难题
题目大意 有一棵树,\(n\)(\(n\leq2*10^5\))个点,每条边\(i\)有颜色\(w_i\),共有\(m\)(\(m\leq n\))种颜色,第\(i\)种颜色的权值是\(c_i\)(\ ...
- [JZOJ3347] 【NOI2013模拟】树的难题
题目 题目大意 给你一棵树,每个节点有三种黑.白.灰三种颜色. 你要割掉一些边(每条边被割需要付出一定的代价),使得森林的每棵树满足: 没有黑点或至多一个白点. 思考历程 这题一看就知道是一个树形DP ...
- G 树的难题
时间限制 : 10000 MS 空间限制 : 165536 KB 评测说明 : 1s,128m 问题描述 给出一个无根树.树有N个点,边有权值.每个点都有颜色,是黑色.白色.灰色这三种颜色之一,称 ...
随机推荐
- LeetCode : 93. Restore IP Addresses
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABZ4AAAHUCAYAAAC6Zj2HAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVlw
- 《Thinking in Java》十四章类型信息_习题解
1~10 Page 318 练习1. 在ToyTest.java中,将Toy的默认构造器注释掉,并解释发生的现象. 书中代码如下(略有改动): package org.cc.foo_008; p ...
- 数据结构之Dijkstra算法
基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...
- 【转载】python super的用法
转载地址: http://blog.csdn.net/cxm19830125/article/details/20610533 super的用法是调用继承类的初始化方法,如下面的代码: class A ...
- Multiple types were found that match the controller named 'Home'. (weird error)
found the error, because I changed the namespace and assembly name, then on the bin folder the old d ...
- JavaScript - 事件流
事件流 事件冒泡就是事件沿DOM树向上传播,在没一级节点上都会发生,直至传播到document对象. 事件捕获正好相反,但是老版本的浏览器不支持,因此很少有人使用事件捕获. 事件处理程序 HTMl 事 ...
- [Tools]迁移Confluence, JIRA, Fisheye
[背景] 原先的Confluence, JIRA, Fisheye都部署在一台服务器(192.168.200.203)上,导致这台机器太卡,公司又分配了两台虚拟机来分开这几个应用(192.168.20 ...
- MySQL5.7更改密码时出现ERROR 1054 (42S22): Unknown column 'password' in 'field list'
转自:http://blog.csdn.net/u010603691/article/details/50379282 新安装的MySQL5.7,登录时提示密码错误,安装的时候并没有更改密码,后来通过 ...
- Iphone [Tab Bar实现多view切换,Picker,DataPicter实现
用Tab Bar Controller处理IPhone多个view切换, 而且还附有创建空项目,picker和DataPicker的实现! 具体步骤: 1.创建一个空项目,选择User Interfa ...
- 用Feature的方式删除SharePoint2010的Page中重复的WebPart
用Feature的方式删除SharePoint2010的Page中重复的WebPart. 代码如下所示: public class SupportCenterDuplicatedWebpartRemo ...