欢迎转载,转载请注明出处。

概要

本文简要介绍如何使用spark-cassandra-connector将json文件导入到cassandra数据库,这是一个使用spark的综合性示例。

前提条件

假设已经阅读技术实战之3,并安装了如下软件

  1. jdk
  2. scala
  3. sbt
  4. cassandra
  5. spark-cassandra-connector

实验目的

将存在于json文件中的数据导入到cassandra数据库,目前由cassandra提供的官方工具是json2sstable,由于对cassandra本身了解不多,这个我还没有尝试成功。

但想到spark sql中可以读取json文件,而spark-cassadra-connector又提供了将RDD存入到数据库的功能,我想是否可以将两者结合一下。

创建KeySpace和Table

为了减少复杂性,继续使用实战3中的keyspace和table,

CREATE KEYSPACE test WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1 };
CREATE TABLE test.kv(key text PRIMARY KEY, value int);

启动spark-shell

与实战3中描述一致。

bin/spark-shell --driver-class-path /root/working/spark-cassandra-connector/spark-cassandra-connector/target/scala-2.10/spark-cassandra-connector_2.10-1.1.0-SNAPSHOT.jar:/root/.ivy2/cache/org.apache.cassandra/cassandra-thrift/jars/cassandra-thrift-2.0.9.jar:/root/.ivy2/cache/org.apache.thrift/libthrift/jars/libthrift-0.9.1.jar:/root/.ivy2/cache/org.apache.cassandra/cassandra-clientutil/jars/cassandra-clientutil-2.0.9.jar:/root/.ivy2/cache/com.datastax.cassandra/cassandra-driver-core/jars/cassandra-driver-core-2.0.4.jar:/root/.ivy2/cache/io.netty/netty/bundles/netty-3.9.0.Final.jar:/root/.ivy2/cache/com.codahale.metrics/metrics-core/bundles/metrics-core-3.0.2.jar:/root/.ivy2/cache/org.slf4j/slf4j-api/jars/slf4j-api-1.7.7.jar:/root/.ivy2/cache/org.apache.commons/commons-lang3/jars/commons-lang3-3.3.2.jar:/root/.ivy2/cache/org.joda/joda-convert/jars/joda-convert-1.2.jar:/root/.ivy2/cache/joda-time/joda-time/jars/joda-time-2.3.jar:/root/.ivy2/cache/org.apache.cassandra/cassandra-all/jars/cassandra-all-2.0.9.jar:/root/.ivy2/cache/org.slf4j/slf4j-log4j12/jars/slf4j-log4j12-1.7.2.jar

准备json文件

以spark自带的person.json文件为例,内容如下所示

{"name":"Andy", "age":30}
{"name":"Justin", "age":19}

数据导入

假设person.json文件存储在$SPARK_HOME目录,在启动spark-shell之后,执行如下语句

sc.stop
import com.datastax.spark.connector._
import org.apache.spark._
val conf = new SparkConf()
conf.set("spark.cassandra.connection.host", "127.0.0.1")
val sc = new SparkContext("local[2]", "Cassandra Connector Test", conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val path = "./people.json"
val people = sqlContext.jsonFile(path)
people.map(p=>(p.getString(10),p.getInt(0)))
.saveToCassandra("test","kv",SomeColumns("key","value"))

注意:

  1. jsonFile返回的是jsonRDD,其中每一个成员是Row类型,并不行直接将saveToCassandra作用于jsonRDD,需要先作一步转换即map过程
  2. map中使用到的getXXX函数是在事先已知数据类型的情况下取出其值
  3. 最后saveToCassandra触发数据的存储过程

另外一个地方值得记录一下,如果在cassandra中创建的表使用了uuid作为primary key,在scala中使用如下函数来生成uuid

import java.util.UUID
UUID.randomUUID

验证步骤

使用cqlsh来查看数据是否已经真正的写入到test.kv表中。

小结

本次实验结合了以下知识

  1. spark sql
  2. spark RDD的转换函数
  3. spark-cassandra-connector

Apache Spark技术实战之4 -- 利用Spark将json文件导入Cassandra的更多相关文章

  1. Apache Spark技术实战之6 --Standalone部署模式下的临时文件清理

    问题导读 1.在Standalone部署模式下,Spark运行过程中会创建哪些临时性目录及文件? 2.在Standalone部署模式下分为几种模式? 3.在client模式和cluster模式下有什么 ...

  2. Apache Spark技术实战之6 -- spark-submit常见问题及其解决

    除本人同意外,严禁一切转载,徽沪一郎. 概要 编写了独立运行的Spark Application之后,需要将其提交到Spark Cluster中运行,一般会采用spark-submit来进行应用的提交 ...

  3. Apache Spark技术实战之5 -- SparkR的安装及使用

    欢迎转载,转载请注明出处,徽沪一郎. 概要 根据论坛上的信息,在Sparkrelease计划中,在Spark 1.3中有将SparkR纳入到发行版的可能.本文就提前展示一下如何安装及使用SparkR. ...

  4. Apache Spark技术实战之3 -- Spark Cassandra Connector的安装和使用

    欢迎转载,转载请注明出处,徽沪一郎. 概要 前提 假设当前已经安装好如下软件 jdk sbt git scala 安装cassandra 以archlinux为例,使用如下指令来安装cassandra ...

  5. Apache Spark技术实战之8:Standalone部署模式下的临时文件清理

    未经本人同意严禁转载,徽沪一郎. 概要 在Standalone部署模式下,Spark运行过程中会创建哪些临时性目录及文件,这些临时目录和文件又是在什么时候被清理,本文将就这些问题做深入细致的解答. 从 ...

  6. Apache Spark技术实战之7 -- CassandraRDD高并发数据读取实现剖析

    未经本人同意,严禁转载,徽沪一郎. 概要 本文就 spark-cassandra-connector 的一些实现细节进行探讨,主要集中于如何快速将大量的数据从cassandra 中读取到本地内存或磁盘 ...

  7. Apache Spark技术实战之9 -- 日志级别修改

    摘要 在学习使用Spark的过程中,总是想对内部运行过程作深入的了解,其中DEBUG和TRACE级别的日志可以为我们提供详细和有用的信息,那么如何进行合理设置呢,不复杂但也绝不是将一个INFO换为TR ...

  8. Apache Spark技术实战之1 -- KafkaWordCount

    欢迎转载,转载请注明出处,徽沪一郎. 概要 Spark应用开发实践性非常强,很多时候可能都会将时间花费在环境的搭建和运行上,如果有一个比较好的指导将会大大的缩短应用开发流程.Spark Streami ...

  9. Apache Spark技术实战之2 -- PackratParsers实例

    欢迎转载,转载请注明出处,徽沪一郎 概要 通过一个简明的Demo程序来说明如何使用scala中的PackratParsers DemoApp import scala.util.parsing.com ...

随机推荐

  1. MFC 打开链接的方法

    第一种: system("start explorer http://http://www.baidu.com"); 第二种: ShellExecute(NULL, NULL, _ ...

  2. EF框架step by step(9)—Code First Fluent API

    在上一篇中,讲述了用数据特性的方式来标识实体与数据表之间的映射关系,在Code First方法中,还可以通过Fluent API的方式来处理实体与数据表之间的映射关系. 要使用Fluent API必须 ...

  3. ACM ICPC 2015 Moscow Subregional Russia, Moscow, Dolgoprudny, October, 18, 2015 A. Anagrams

    A. Anagrams time limit per test 1 second memory limit per test 512 megabytes input standard input ou ...

  4. BZOJ3189 : [Coci2011]Slika

    通过离线将操作建树,即可得到最终存在的操作. 然后逆着操作的顺序,倒着进行染色,对于每行维护一个并查集即可. 时间复杂度$O(n(n+m))$. #include<cstdio> cons ...

  5. BZOJ4631 : 踩气球

    将所有盒子插入链表,每当一个盒子变空时,从链表里删去它. 查一下它的前驱后继$pre,nxt$,那么$[pre+1,nxt-1]$都是空的. 每次对于$[A,B]$这段都为空,对小朋友按$R$维护线段 ...

  6. ACM 一种排序

    一种排序 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 现在有很多长方形,每一个长方形都有一个编号,这个编号可以重复:还知道这个长方形的宽和长,编号.长.宽都是整数 ...

  7. ACM 国王的魔镜

    国王的魔镜 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述 国王有一个魔镜,可以把任何接触镜面的东西变成原来的两倍——只是,因为是镜子嘛,增加的那部分是反的. 比如一 ...

  8. [题解]扫雷Mine

    // 此博文为迁移而来,写于2015年2月6日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vrft.html 1088 ...

  9. 【bzoj3527】[Zjoi2014]力 FFT

    2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...

  10. 【bzoj1367】[Baltic2004]sequence

    2016-05-31 17:31:26 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1367 题解:http://www.cnblogs.co ...