HDU 4940 Destroy Transportation system(2014 Multi-University Training Contest 7)
思路:无源汇有上下界可行流判定, 原来每条边转化成 下界为D 上界为 D+B ,判断是否存在可行流即可。
为什么呢? 如果存在可行流 那么说明对于任意的 S 集合流出的肯定等于 流入的, 流出的计算的 X 肯定小于等于这个流量(X是下界之和), 计算出来的Y (上界之和)肯定大于等于 这个流量 肯定满足X<=Y。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include <iostream>
#include<climits>
using namespace std;
const int N = ;
const int M = ;
int n;
int ecnt, head[N], nx[M], to[M], va[M], cur_edge[N];
int source, target, flow, pre[N], lev[N], qu[N], sign;
void addedge(int u, int v, int w) {
to[ecnt] = v;
nx[ecnt] = head[u];
va[ecnt] = w;
head[u] = ecnt++;
}
bool bfs(int s, int t) {
std::fill(lev, lev + n, -);
sign = t;
lev[t] = ;
int st = , ed = ;
qu[ed++] = t;
while (st != ed && lev[s] == -) {
int u = qu[st++];
for (int i = head[u]; i != -; i = nx[i]) {
if (va[i ^ ] > && lev[to[i]] == -) {
lev[to[i]] = lev[u] + ;
qu[ed++] = to[i];
}
}
}
return lev[s] != -;
}
void push() {
int delta = INT_MAX, u, p;
for (u = target; u != source; u = to[p ^ ]) {
p = pre[u];
delta = std::min(delta, va[p]);
}
for (u = target; u != source; u = to[p ^ ]) {
p = pre[u];
va[p] -= delta;
if (!va[p]) {//注意double时要改
sign = to[p ^ ];
}
va[p ^ ] += delta;
}
flow += delta;
}
void dfs(int u) {
if (u == target)
push();
else {
for (int i = cur_edge[u]; i != -; i = nx[i]) {
if (va[i] > && lev[u] == lev[to[i]] + ) {
pre[to[i]] = i;
dfs(to[i]);
if (lev[sign] > lev[u]) {
return;
}
sign = target;
}
}
lev[u] = -;
}
}
int nc, pc, tc;
int lx[M], ly[M], lv[M];
void dinic(int s, int t, int node_cnt) {
source = s;
target = t;
n = node_cnt; //construct graph flow = ;
while (bfs(source, target)) {
for (int i = ; i < n; ++i) {
cur_edge[i] = head[i];
}
dfs(source);
} }
int in[],out[];
void solve() {
int n,m;
memset(in,,sizeof(in));
memset(out,,sizeof(out));
scanf("%d%d",&n,&m);
fill(head,head+n+,-);
ecnt=;
for(int i=;i<m;++i)
{
int u,v,x,y;
scanf("%d%d%d%d",&u,&v,&x,&y);
in[v]+=x;
in[u]-=x;
addedge(u,v,y);
addedge(v,u,);
}
int s,t;
s=;t=n+;
int sum=;
for(int i=;i<=n;++i)
{
if(in[i]>)
{
sum+=in[i];
addedge(s,i,in[i]);
addedge(i,s,);
}
else
{
addedge(i,t,-in[i]);
addedge(t,i,);
}
}
dinic(s,t,t+);
if(flow==sum)puts("happy");
else puts("unhappy");
}
int main() {
int ri=,tt;
scanf("%d",&tt);
while(tt--)
{
printf("Case #%d: ",++ri);
solve();
}
return ;
}
HDU 4940 Destroy Transportation system(2014 Multi-University Training Contest 7)的更多相关文章
- hdu 4940 Destroy Transportation system(水过)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4940 Destroy Transportation system Time Limit: 2000/1 ...
- hdu 4940 Destroy Transportation system (无源汇上下界可行流)
Destroy Transportation system Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- HDU 4940 Destroy Transportation system(无源汇上下界网络流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
- HDU 4940 Destroy Transportation system(无源汇有上下界最大流)
看不懂题解以及别人说的集合最多只有一个点..... 然后试了下题解的方法http://blog.sina.com.cn/s/blog_6bddecdc0102uzka.html 首先是无源汇有上下界最 ...
- hdu 4940 Destroy Transportation system( 无源汇上下界网络流的可行流推断 )
题意:有n个点和m条有向边构成的网络.每条边有两个花费: d:毁坏这条边的花费 b:重建一条双向边的花费 寻找这样两个点集,使得点集s到点集t满足 毁坏全部S到T的路径的费用和 > 毁坏全部T到 ...
- hdu4940 Destroy Transportation system(2014多校联合第七场)
题意很容易转化到这样的问题:在一个强连通的有向图D中是否存在这样的集合划分S + T = D,从S到T集合的边权大于从T到S集合的边权. 即D(i, j) > B(j, i) + D(j, i ...
- 【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)
Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s repr ...
- HDU 4940(杭电更多的学校#7 1006) Destroy Transportation system(到处乱混)
职务地址:pid=4940">HDU 4940 当时这个题一看就看出来了是网络流的最小割.然后就一直在想建图. .然后突然发现,应该要让T集合的数目最少,不然仅仅要有两个,那这两个的每 ...
- HDU4940 Destroy Transportation system(有上下界的最大流)
Problem Description Tom is a commander, his task is destroying his enemy’s transportation system. Le ...
随机推荐
- struts 数据验证
1. validate()验证 将对页面表单验证的内容写到validate()方法中,实现验证和业务处理内容的分离 在Action中添加 validate()方法 public void vali ...
- Mysql常用命令行大全
第一招.mysql服务的启动和停止 net stop mysql net start mysql 第二招.登陆mysql 语法如下: mysql -u用户名 -p用户密码 键入命令mysql -uro ...
- each(callback) 对于每个匹配的元素所要执行的函数
以每一个匹配的元素作为上下文来执行一个函数. 意味着,每次执行传递进来的函数时,函数中的this关键字都指向一个不同的DOM元素(每次都是一个不同的匹配元素).而且,在每次执行函数时,都会给函数传递一 ...
- jquery之empty()与remove()区别
要用到移除指定元素的时候,发现empty()与remove([expr])都可以用来实现.可仔细观察效果的话就可以发现.empty()是只移除了 指定元素中的所有子节点,拿$("p" ...
- js计时器方法 setInterval(),setTimeout()
window.setInterval() 周期性地调用一个函数(function)或者执行一段代码. var intervalID = window.setInterval(func, delay[, ...
- 【转】 Tomcat v7.0 Server at localhost was unable to start within 45
转载地址:http://www.jsjtt.com/java/JavaWebkaifa/58.html Starting Tomcat v7.0 Server at localhost' has en ...
- css width="100" style ="width:100px" 区别
1. width="100"是正确的,而 width="100px"是错误的, style = "width:100px"是正确的 2. s ...
- 《BI项目笔记》历年外观质量均值变化分析Cube的建立
分析主题主要维度:烟叶级别.烟叶级别按等级信息.烟叶级别按分级标准(标准维度)产地(父子维度)检测时间(时间维度,以Tqc_Raw_PresentationQuality . CheckTime字段派 ...
- <开心一笑> 前端工程师你们伤不起!
前端工程师你们伤不起!! 来自: 刻铭 2011-03-11 14:09:53 前端工程师伤不起 老子几年前进了互联网圈!!!!!!!成了前端工程师,名字是不是很拉风,有木有!!!!!!!! 尼玛 ...
- (转)linux grep 正则表达式
转自:http://www.cnblogs.com/xiaouisme/archive/2012/11/09/2762543.html -------------------------------- ...