题目链接: 传送门

Domino Effect

time limit per test:1 second     memory limit per test:256 megabytes

Description

Little Chris is a huge fan of linear algebra. This time he has been given a homework about the unusual square of a square matrix.
The dot product of two integer number vectors x and y of size n is the sum of the products of the corresponding components of the vectors. The unusual square of an n × n square matrix A is defined as the sum of n dot products. The i-th of them is the dot product of the i-th row vector and the i-th column vector in the matrix A.
Fortunately for Chris, he has to work only in GF(2)! This means that all operations (addition, multiplication) are calculated modulo 2. In fact, the matrix A is binary: each element of A is either 0 or 1. For example, consider the following matrix A:

The unusual square of A is equal to (1·1 + 1·0 + 1·1) + (0·1 + 1·1 + 1·0) + (1·1 + 0·1 + 0·0) = 0 + 1 + 1 = 0.
However, there is much more to the homework. Chris has to process q queries; each query can be one of the following:

  • 1、given a row index i, flip all the values in the i-th row in A;
  • 2、given a column index i, flip all the values in the i-th column in A;
  • 3、find the unusual square of A.
    To flip a bit value w means to change it to 1 - w, i.e., 1 changes to 0 and 0 changes to 1.
    Given the initial matrix A, output the answers for each query of the third type! Can you solve Chris's homework?

Input

The first line of input contains an integer n (1 ≤ n ≤ 1000), the number of rows and the number of columns in the matrix A. The next n lines describe the matrix: the i-th line contains n space-separated bits and describes the i-th row of A. The j-th number of the i-th line aij (0 ≤ aij ≤ 1) is the element on the intersection of the i-th row and the j-th column of A.
The next line of input contains an integer q (1 ≤ q ≤ 106), the number of queries. Each of the next q lines describes a single query, which can be one of the following:

  • 1 i — flip the values of the i-th row;
  • 2 i — flip the values of the i-th column;
  • 3 — output the unusual square of A.
    Note: since the size of the input and output could be very large, don't use slow output techniques in your language. For example, do not use input and output streams (cin, cout) in C++.

Output

Let the number of the 3rd type queries in the input be m. Output a single string s of length m, where the i-th symbol of s is the value of the unusual square of A for the i-th query of the 3rd type as it appears in the input.

Sample Input

3
1 1 1
0 1 1
1 0 0
12
3
2 3
3
2 2
2 2
1 3
3
3
1 2
2 1
1 1
3

Sample Output

01001

解题思路:

题目定义了矩阵的特殊乘法,
尝试分析一下3*3的矩阵:

A11  A12  A13              A11*A11+A12*A21+A13*A31
A21  A22  A23    =     +   A12*A21+A22*A22+A32*A23          =     A11*A11+A22*A22+A33*A33+0
A31  A32  A33          +   A13*A31+A23*A32+A33*A33

所以对于每次操作只要对对角线元素操作就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef __int64 LL;
const int MAX = 1005;
int ans[MAX][MAX];

int main()
{
    int N,q,sum = 0;
    memset(ans,0,sizeof(ans));
    scanf("%d",&N);
    for (int i = 1;i <= N;i++)
    {
        for (int j = 1;j <= N;j++)
        {
            scanf("%d",&ans[i][j]);
        }
    }
    for (int i = 1;i <= N;i++)
    {
        for (int j = 1;j <= N;j++)
        {
            sum += ans[i][j]*ans[j][i];
        }
    }
    sum %= 2;
    scanf("%d",&q);
    while (q--)
    {
        int opt,tmp;
        scanf("%d",&opt);
        if (opt != 3)
        {
            scanf("%d",&tmp);
            if (sum == 0) sum = 1;
            else if (sum == 1) sum = 0;
        }
        else
        {
            printf("%d",sum);
        }
    }
    printf("\n");
    return 0;
}

CF 405C Unusual Product(想法题)的更多相关文章

  1. CF 214B Hometask(想法题)

    题目链接: 传送门 Hometask Time Limit: 2 seconds     Memory Limit: 256 megabytes Description Furik loves mat ...

  2. CF 628B New Skateboard --- 水题

    CD 628B 题目大意:给定一个数字(<=3*10^5),判断其能被4整除的连续子串有多少个 解题思路:注意一个整除4的性质: 若bc能被4整除,则a1a2a3a4...anbc也一定能被4整 ...

  3. CF 628A --- Tennis Tournament --- 水题

    CF 628A 题目大意:给定n,b,p,其中n为进行比赛的人数,b为每场进行比赛的每一位运动员需要的水的数量, p为整个赛程提供给每位运动员的毛巾数量, 每次在剩余的n人数中,挑选2^k=m(m & ...

  4. HDU 4972 Bisharp and Charizard 想法题

    Bisharp and Charizard Time Limit: 1 Sec  Memory Limit: 256 MB Description Dragon is watching NBA. He ...

  5. CodeForces 111B - Petya and Divisors 统计..想法题

    找每个数的约数(暴力就够了...1~x^0.5)....看这约数的倍数最后是哪个数...若距离大于了y..统计++...然后将这个约数的最后倍数赋值为当前位置...好叼的想法题.... Program ...

  6. HDU - 5806 NanoApe Loves Sequence Ⅱ 想法题

    http://acm.hdu.edu.cn/showproblem.php?pid=5806 题意:给你一个n元素序列,求第k大的数大于等于m的子序列的个数. 题解:题目要求很奇怪,很多头绪但写不出, ...

  7. CF 701B Cells Not Under Attack(想法题)

    题目链接: 传送门 Cells Not Under Attack time limit per test:2 second     memory limit per test:256 megabyte ...

  8. CF 405B Domino Effect(想法题)

    题目链接: 传送门 Domino Effect time limit per test:1 second     memory limit per test:256 megabytes Descrip ...

  9. C. Unusual Product(cf)

    http://codeforces.com/problemset/problem/405/C 题意: 给出一个n*n的矩阵,有q个操作,输入3时,输出A ,A等于第i行乘以第i列的对应元素的和(mod ...

随机推荐

  1. web 前端常用组件【05】ZTree

    web 项目或多或少都会有涉及到什么人员职称树,菜单树,组织机构树等. 历手三四个项目有大有小,采用的树前端都是 Ztree. 有些优秀的J2EE 框架将这些常用的组件都封装起来,作为模块化的组件提供 ...

  2. JSON拾遗

    最近开始翻<JavaScript高级程序设计>,其实很多大师级人物都推荐这本书为JavaScript入门级读物.因为第20章 JSON篇幅最小,而且以前也写过一篇JSON的总结JSON简介 ...

  3. ASP.NET MVC3入门教程之环境搭建

    本文转载自:http://www.youarebug.com/forum.php?mod=viewthread&tid=90&extra=page%3D1 什么是ASP.NET MVC ...

  4. 处理Linux下subversion尝试连接自建的VisualSVN server报“Key usage violation in certificate has been detected”错误的问题

    在Linux下使用subversion尝试链接VisualSVN server搭建的svn库,可能会报下面错误, svn: OPTIONS of 'https://server.domain.loca ...

  5. C语言字符串与数字相互转换

    在C/C++语言中没有专门的字符串变量,通常用字符数组来存放字符串.字符串是以“\0”作为结束符.C/C++提供了丰富的字符串处理函数,下面列出了几个最常用的函数. ● 字符串输出函数puts. ● ...

  6. bindService初步了解

    bindService的使用: 当需要调Service里面的方法时,可以用bindService() 首先定义一个类继承于Service,然后配置Manifest.xml文件 public class ...

  7. vijos-1447 开关灯泡-大整数开方算法

    描述 一个房间里有n盏灯泡,一开始都是熄着的,有1到n个时刻,每个时刻i,我们会将i的倍数的灯泡改变状态(即原本开着的现将它熄灭,原本熄灭的现将它点亮),问最后有多少盏灯泡是亮着的. 提示 范围:40 ...

  8. Android下的数据储存方式

      安卓系统默认提供了一下几种数据储存的方式: Shared Preferences 内部储存 外部储存 SQLite数据库 保存到网络服务器   使用Shared Preferences       ...

  9. git工作流程

    git工作流程 一般工作流程如下: 克隆 Git 资源作为工作目录. 在克隆的资源上添加或修改文件. 如果其他人修改了,你可以更新资源. 在提交前查看修改. 提交修改. 在修改完成后,如果发现错误,可 ...

  10. Java--剑指offer(9)

    41.输出所有和为S的连续正数序列.序列内按照从小至大的顺序,序列间按照开始数字从小到大的顺序 import java.util.ArrayList; public class Solution { ...