[bzoj2287]消失之物 题解(背包dp)
2287: 【POJ Challenge】消失之物
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1138 Solved: 654
[Submit][Status][Discuss]
Description
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
Output
一个 N × M 的矩阵, Count(i, x)的末位数字。
Sample Input
1 1 2
Sample Output
11
21
HINT
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。
好久没有做水题了。
首先考虑暴力怎么做:跑n遍背包,如果轮到某个物品丢失就在外层循环到它的时候直接continue(可得90分的好成绩)
#include<cstdio>
#include<iostream>
#include<cstring>
#define re register
using namespace std;
const int N=;
int n,m,dp[N][N],w[N];
inline void mod(int &x)
{
if(x>)x-=;
}
int main()
{
scanf("%d%d",&n,&m);
for(re int i=;i<=n;i++)
scanf("%d",&w[i]);
for(re int now=;now<=n;now++)
{
dp[now][]=;
for(re int i=;i<=n;i++)
{
if(i==now)continue;
for(int j=m;j>=w[i];j--)
mod(dp[now][j]+=dp[now][j-w[i]]);
}
}
for(re int i=;i<=n;i++)
{
for(re int j=;j<=m;j++)
printf("%d",dp[i][j]%);
printf("\n");
}
return ;
}
之所以会T是因为它算了很多次相同的部分,那么考虑如果只跑一次背包,之后对于每个物品丢失时怎么得到答案
很简单,减去丢失物品的贡献就好了。
#include<cstdio>
#include<iostream>
#include<cstring>
#define re register
using namespace std;
typedef long long ll;
const int N=;
int n,m,w[N];
int dp[N],ans[N];
int main()
{
scanf("%d%d",&n,&m);
for(re int i=;i<=n;i++)
scanf("%d",&w[i]);
dp[]=;
for(int i=;i<=n;i++)
for(int j=m;j>=w[i];j--)
(dp[j]+=dp[j-w[i]])%=;
for(int i=;i<=n;i++)
{
memcpy(ans,dp,sizeof(dp));
for(int j=w[i];j<=m;j++)
ans[j]=(ans[j]-ans[j-w[i]]+)%;
for(int j=;j<=m;j++)
printf("%d",(ans[j]+)%);
puts(" ");
}
return ;
}
[bzoj2287]消失之物 题解(背包dp)的更多相关文章
- [洛谷P4141] 消失之物「背包DP」
暴力:暴力枚举少了哪个,下面套一个01背包 f[i][j]表示到了i物品,用了j容量的背包时的方案数,f[i][j]=f[i-1][j]+f[i-1][j-w[i]]O(n^3) 优化:不考虑消失的, ...
- luogu p4141 消失之物(背包dp+容斥原理)
题目传送门 昨天晚上学长讲了这题,说是什么线段树分治,然后觉得不可做,但那还不是正解,然后感觉好像好难的样子. 由于什么鬼畜的分治不会好打,然后想了一下$O(nm)$的做法,想了好长时间觉得这题好像很 ...
- 消失之物(背包DP)(容斥或分治)
容斥做法: 首先n^2搞出f[i][j]第i个物品,j体积的方案数. 去除每个物品贡献: 设个g[i][j]表示当i不选,j体积方案数(注意不是此时的范围相对于全局,而不是1---i) 那么我们用到一 ...
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- bzoj2287【POJ Challenge】消失之物(退背包)
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 657 Solved: 382[Submit][S ...
- 洛谷P4141 消失之物 题解 背包问题扩展
题目链接:https://www.luogu.com.cn/problem/P4141 题目大意: 有 \(n\) 件物品,求第 \(i\) 件物品不能选的时候(\(i\) 从 \(1\) 到 \(n ...
- 2018.11.06 bzoj2287: 【POJ Challenge】消失之物(背包)
传送门 先假设所有物品都能用,做01背包求出方案数. 然后枚举每个点,分类讨论扣掉它对答案的贡献. 代码: #include<bits/stdc++.h> using namespace ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- P4141 消失之物(背包)
传送门 太珂怕了……为什么还有大佬用FFT和分治的…… 首先如果没有不取的限制的话就是一个裸的背包 然后我们考虑一下,正常的转移的话代码是下面这个样子的 ;i<=n;++i) for(int j ...
随机推荐
- php abs()函数 语法
php abs()函数 语法 abs()函数怎么用? abs()函数的作用是返回一个数的绝对值.语法是abs(number),如果参数 number 是 float,则返回的类型也是 float,否则 ...
- PHP curl_multi_select函数
curl_multi_select — 等待所有cURL批处理中的活动连接 说明 int curl_multi_select ( resource $mh [, float $timeout = 1. ...
- CF 1045 H. Self-exploration 解题报告
CF 1045 H. Self-exploration 考虑到串的结构一定是 1...0....1....0.....1... 这样的,而\(01\)与\(10\)在转折点交替出现 首先串长一定是\( ...
- 76 学习C++
0 引言 C++语言特性记录,提高对这门语言的理解,进而带动对编程语言特性的理解. 相关网站及教程 # W3Cschool C++教程 https://www.w3cschool.cn/cpp/ # ...
- 微信小程序学习笔记(二)--框架-全局及页面配置
描述和功能 框架提供了自己的视图层描述语言 WXML 和 WXSS,以及基于 JavaScript 的逻辑层框架,并在视图层与逻辑层间提供了数据传输和事件系统,让开发者能够专注于数据与逻辑. 响应的数 ...
- Redis入门很简单之一【简介与环境搭建】
Redis入门很简单之一[简介与环境搭建] 博客分类: NoSQL/Redis/MongoDB redisnosqlmemcached缓存中间件 [Redis简介] <一>. NoSQL ...
- Java BIO socket
package org.rx.socks; import lombok.extern.slf4j.Slf4j; import org.rx.core.LogWriter; import org.rx. ...
- 不是有效的win32应用程序
问题描述: 用vs2012编写的程序在xp下运行提示"不是有效的win32应用程序", 改成静态编译还是会提示上面的错误 解决办法: 原来常规里面的平台工具集的设置如上,更改为下面 ...
- docker-compose 搭建 Redis Sentinel 测试环境
docker-compose 搭建 Redis Sentinel 测试环境 本文介绍如何使用 docker-compose 快速搭建一个 Redis Sentinel 测试环境.其中 Redis 集群 ...
- mac、windows系统charles安装破解
一.下载 官网下载适合自己电脑的最新版本 下载地址:https://www.charlesproxy.com/latest-release/download.do 二.破解 破解地址:https:// ...