bzoj1706 [usaco2007 Nov]relays 奶牛接力跑 矩阵快速幂
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=1706
题解
换个方法定义矩阵乘法:先加再取 \(\min\)。
对于一个 \(n\times m\) 的矩阵 \(A\),和一个 \(m\times l\) 的矩阵 \(B\) 它们的乘积 \(C\) 是一个 \(n \times l\) 的矩阵。
\]
关于这个东西的结合律的证明和一般的矩阵乘法类似,直接带入就可以了。大家可以看一下我的另一篇博客。动态 DP 学习笔记 里面有提到。
然后显然就是先建出来邻接矩阵,然后求它的 \(n\) 次方,这个就是个矩阵快速幂了。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 200 + 7;
int T, n, m, st, ed;
int b[N];
struct Edges { int u, v, w; } a[N];
struct Matrix {
int a[N][N];
inline Matrix() { memset(a, 0x3f, sizeof(a)); }
inline Matrix(const int &x) {
memset(a, 0x3f, sizeof(a));
for (int i = 1; i <= n; ++i) a[i][i] = x;
}
inline Matrix operator * (const Matrix &b) {
Matrix c;
for (int k = 1; k <= n; ++k)
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n; ++j)
smin(c.a[i][j], a[i][k] + b.a[k][j]);
return c;
}
} A;
inline Matrix fpow(Matrix x, int y) {
Matrix ans(0);
for (; y; y >>= 1, x = x * x) if (y & 1) ans = ans * x;
return ans;
}
inline void work() {
std::sort(b + 1, b + (m << 1) + 1);
n = std::unique(b + 1, b + (m << 1) + 1) - b - 1;
for (int i = 1; i <= m; ++i) {
int x = a[i].u, y = a[i].v, z = a[i].w;
x = std::lower_bound(b + 1, b + n + 1, x) - b;
y = std::lower_bound(b + 1, b + n + 1, y) - b;
A.a[x][y] = A.a[y][x] = z;
}
printf("%d\n", fpow(A, T).a[std::lower_bound(b + 1, b + n + 1, st) - b][std::lower_bound(b + 1, b + n + 1, ed) - b]);
}
inline void init() {
read(T), read(m), read(st), read(ed);
for (int i = 1; i <= m; ++i)
read(a[i].w), read(a[i].u), read(a[i].v),
b[(i << 1) - 1] = a[i].u, b[i << 1] = a[i].v;
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj1706 [usaco2007 Nov]relays 奶牛接力跑 矩阵快速幂的更多相关文章
- 【BZOJ1706】[usaco2007 Nov]relays 奶牛接力跑 矩阵乘法
[BZOJ1706][usaco2007 Nov]relays 奶牛接力跑 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项 ...
- bzoj1706: [Usaco2007 Nov]relays 奶牛接力跑 (Floyd+新姿势)
题目大意:有t(t<=100)条无向边连接两点,求s到e刚好经过n(n<=10^7)条路径的最小距离. 第一反应分层图,但是一看n就懵逼了,不会写.看了题解之后才知道可以这么玩... 首先 ...
- [bzoj1706] [usaco2007 Nov]relays 奶牛接力跑
大概是叫倍增Floyd? 显然最多200个点...f[i][j][k]表示从j到k,走2^i步的最小路程.就随便转移了.. 查询的话就是把n二进制位上是1的那些都并起来. #include<cs ...
- BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德
BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...
- bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑【矩阵乘法+Floyd】
唔不知道怎么说--大概核心是把矩阵快速幂的乘法部分变成了Floyd一样的东西,非常之神 首先把点离散一下,最多有200个,然后建立邻接矩阵,a[u][v]为(u,v)之间的距离,没路就是inf 然后注 ...
- 【BZOJ】1706: [usaco2007 Nov]relays 奶牛接力跑
[题意]给定m条边的无向图,起点s,终点t,要求找出s到t恰好经过n条边的最短路径.n<=10^6,m<=100. [算法]floyd+矩阵快速幂 [题解] 先对点离散化,得到点数N. 对 ...
- zjoj1706: [usaco2007 Nov]relays 奶牛接力跑
矩阵乘法(快速幂) 为说明方便,这里让\(k\)为点数,\(n\)为路径长度. 先将点都离散化,这样最后的点只有\(2k\)个. 先考虑一种暴力,每次用\(O(k^3)\)的复杂度来暴力更新,设当前长 ...
- 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑 离散化+倍增Floyd
题目描述 FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100) ...
- bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑——倍增floyd
Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...
随机推荐
- InfluxDB安装使用
influxdb简介 启动步骤 服务启停:sudo service influxdb start/stop/restart 安装过程: 1.增加yum源 cat <<EOF | sud ...
- 在bash脚本的for i in编写中将点号``写成单引号‘’或者双引号“”会有什么后果?
编写一个测试脚本: 输入启动命令:https://blog.csdn.net/zhoucheng05_13/article/details/test.sh,结果报错 使用的是root用户,但是仍然提示 ...
- 北风设计模式课程---访问者模式(Visitor)
北风设计模式课程---访问者模式(Visitor) 一.总结 一句话总结: 设计模式是日常问题的经验总结方案,所以学好设计模式对日常出现的问题可以有很好的解决. 访问者设计模式有点神似 抽象工厂模式, ...
- leetcode-mid-array-49 Group Anagrams
mycode 95.35% 思路:构建字典 class Solution(object): def groupAnagrams(self, strs): """ :ty ...
- WeekMap WeakSet的用途
1. WeekMap WeakSet有一个特性,就是加入其中的元素不会算入引用计数,所以当其他地方没有对对象的引用之后,就可以删除了,不会造成内存泄漏. WeekMap的一个用途是保存Dom节点引用, ...
- Redis安装启动,Redis Desktop Manager安装
Window 下安装下载地址:https://github.com/MSOpenTech/redis/releases.Redis 支持 32 位和 64 位.这个需要根据你系统平台的实际情况选择,这 ...
- django 给数据库批量添加数据
from .models import Book import random def index(request): book_list = [] for i in range(1, 101): bo ...
- 阶段1 语言基础+高级_1-3-Java语言高级_09-基础加强_第2节 反射_11_反射_案例
student定义sleep方法 用反射+配置文件 定义配置文件 src下new file.新建 加载配置文件.Properties里面有一个load方法,可以加载.properties结尾的配置文件 ...
- 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_08 Map集合_2_Map常用子类
常用的实现类HashMap 它的子类.LinkedHaspMap
- 关于Tomcat的浅谈
(今天看到tomcat已经更新到了9.0.24,这是一篇很早之前的文章,由于账号不想用了,所以搬到这里来,另外的账号要注销了) 1.Tomcat的下载 tomcat官网:http://tomcat.a ...