Canonical Coin Systems

题目描述

A coin system S is a finite (nonempty) set of distinct positive integers corresponding to coin values, also called denominations, in a real or imagined monetary system. For example, the coin system in common use in Canada is {1, 5, 10, 25, 100, 200}, where 1 corresponds to a 1-cent coin and 200 corresponds to a 200-cent (2-dollar) coin. For any coin system S, we assume that there is an unlimited supply of coins of each denomination, and we also assume that S contains 1,since this guarantees that any positive integer can be written as a sum of (possibly repeated) values in S.

Cashiers all over the world face (and solve) the following problem: For a given coin system and a positive integer amount owed to a customer, what is the smallest number of coins required to dispense exactly that amount? For example, suppose a cashier in Canada owes a customer 83 cents. One possible solution is 25+25+10+10+10+1+1+1, i.e.,8 coins, but this is not optimal, since the cashier could instead dispense 25 + 25 + 25 + 5 + 1 + 1 + 1, i.e., 7 coins (which is optimal in this case). Fortunately, the Canadian coin system has the nice property that the greedy algorithm always yields an optimal solution, as do the coin systems used in most countries. The greedy algorithm involves repeatedly choosing a coin of the

largest denomination that is less than or equal to the amount still owed, until the amount owed reaches zero. A coin system for which the greedy algorithm is always optimal is called canonical.

Your challenge is this: Given a coin system S = {c1, c2, . . . , cn }, determine whether S is canonical or non-canonical. Note that if S is non-canonical then there exists at least one counterexample, i.e., a positive integer x such that the minimum number of coins required to dispense exactly x is less than the number of coins used by the greedy algorithm. An example of a non-canonical coin system is {1, 3, 4}, for which 6 is a counterexample, since the greedy algorithm yields 4 + 1 + 1 (3 coins), but an optimal solution is 3 + 3 (2 coins). A useful fact (due to Dexter Kozen and Shmuel Zaks) is that if S is non-canonical, then the smallest counterexample is less than the sum of the two largest denominations.

输入

Input consists of a single case. The first line contains an integer n (2 ≤ n ≤ 100), the number of denominations in the coin system. The next line contains the n denominations as space-separated integers c1 c2 . . . cn, where c1 = 1 and c1 < c2 < . . . < cn ≤ 106.

输出

Output “canonical” if the coin system is canonical, or “non-canonical” if the coin system is non-canonical.

样例输入

4
1 2 4 8

样例输出

canonical

题意

有n种面额的货币,如果能保证所以金额,用贪心思想算出的货币张数(每次减先大面额的货币)和 正确的货币张数是相同的,就是规范的(输出canonical),如果贪心算出的货币张数比正确算出的多,那就是不规范的(输出non-canonical)

题解

正确的货币张数可以通过完全背包算出 转移方程 dp[i] = d[i - a[j] ] + 1;(dp[i]代表剩余金额为i时已经拥有的张数,a[j]代表第j张钱的面额)

代码

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =2000010;
using namespace std;
int n;
int a[maxn],dp[maxn];
int main(){
sca(n);
for(int i = 0; i < n; i++)
sca(a[i]);
sort(a,a+n);
int maxl = a[n - 1] * 2;
for(int i = 0; i < maxl; i++) dp[i] = INF;
dp[0] = 0;
int flag = 1;
for(int i = 1; i < maxl; i++){
for(int j = 0; j < n; j++){
if(a[j] <= i)
dp[i] = min(dp[i], dp[i - a[j]] + 1); //背包
}
int cnt = 0;
int sum = i;
int pos = n - 1;
while(sum){ //贪心
while(sum >= a[pos]){
sum -= a[pos];
cnt ++;
}
pos--;
}
if(cnt > dp[i]) flag = 0; //不等就是不规范
}
if(flag) printf("canonical\n");
else printf("non-canonical\n");
return 0;
}

upc组队赛6 Canonical Coin Systems【完全背包+贪心】的更多相关文章

  1. Canonical Coin Systems【完全背包】

    问题 C: Canonical Coin Systems 时间限制: 1 Sec  内存限制: 128 MB 提交: 200  解决: 31 [提交] [状态] [命题人:admin] 题目描述 A ...

  2. 集训第四周(高效算法设计)L题 (背包贪心)

    Description   John Doe is a famous DJ and, therefore, has the problem of optimizing the placement of ...

  3. uva674 Coin Change ——完全背包

    link:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVA-674 Coin Change---完全背包

    题目链接: https://vjudge.net/problem/UVA-674 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 思路: 每 ...

  5. Light oj 1233 - Coin Change (III) (背包优化)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1233 题目就不说明了. 背包的二进制优化,比如10可以表示为1 2 4 3,而 ...

  6. [luoguP1474] 货币系统 Money Systems(背包)

    传送门 背包 ——代码 #include <cstdio> #include <iostream> #define LL long long int v, n; LL f[10 ...

  7. codeforces 284 E. Coin Troubles(背包+思维)

    题目链接:http://codeforces.com/contest/284/problem/E 题意:n种类型的硬币,硬币的面值可能相同,现在要在满足一些限制条件下求出,用这些硬币构成t面值的方案数 ...

  8. upc组队赛17 Bits Reverse【暴力枚举】

    Bits Reverse 题目链接 题目描述 Now given two integers x and y, you can reverse every consecutive three bits ...

  9. upc组队赛3 Chaarshanbegaan at Cafebazaar

    Chaarshanbegaan at Cafebazaar 题目链接 http://icpc.upc.edu.cn/problem.php?cid=1618&pid=1 题目描述 Chaars ...

随机推荐

  1. Linux下安装xwindow图形界面

    执行命令 yum -y groupinstall Desktop yum -y groupinstall "X Window System" 然后执行"startx&qu ...

  2. 用threading 解决 gunicorn worker timeout

    产生worker timeout 的背景 while 1: ..... time.sleep(1) gunicorn运行起来,只等待了30s,就卡住了,没报任何异常或err,查了gunicorn 官方 ...

  3. Python笔记(十)_迭代器与生成器

    迭代 用for...in来遍历一个可迭代对象的过程就叫迭代 可迭代对象:列表.元组.字典.集合.字符串.生成器 可以使用内置函数isinstance()判断一个对象是否是可迭代对象 >>& ...

  4. 基于vue2.0打造移动商城页面实践 vue实现商城购物车功能 基于Vue、Vuex、Vue-router实现的购物商城(原生切换动画)效果

    基于vue2.0打造移动商城页面实践 地址:https://www.jianshu.com/p/2129bc4d40e9 vue实现商城购物车功能 地址:http://www.jb51.net/art ...

  5. 偏向锁,偏向线程id ,自旋锁

    理解锁的基础知识 如果想要透彻的理解Java锁的来龙去脉,需要先了解以下基础知识. 基础知识之一:锁的类型 锁从宏观上分类,分为悲观锁与乐观锁. 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发 ...

  6. python字符串有多少字节

    是否有一些函数可以告诉我字符串在内存中占用多少字节? 我需要设置套接字缓冲区的大小,以便一次传输整个字符串. 解决方案 import sys sys.getsizeof(s) # getsizeof( ...

  7. ret/retn人为改变执行地址

    1.CALL和RET/RETN是一对指令,CALL把返回地址压入堆栈,RET/RETN把返回地址从堆栈取出,然后将IP寄存器改为该返回地址.  2.不使用CALL,而是人为地把地址放入堆栈即可实现.如 ...

  8. money (dp)

    牛客网暑假训练第二场D题: 链接:https://www.nowcoder.com/acm/contest/140/D来源:牛客网 题目描述 White Cloud has built n store ...

  9. SpringBoot-技术专区-实战方案-应用监控线程池

    背景 废话不多说,做这个监控的背景很简单,我们的项目都是以spring boot框架为基础开发的,代码里所有的异步线程都是通过@Async标签标注的,并且标注的时候都是指定对应线程池的,如果不知@As ...

  10. MVC使用Area:CS0234: 命名空间“System.Web”中不存在类型或命名空间名称“Optimization”(是否缺少程序集引用?)

    一,如图: 解决方法是:将区域生成的的文件夹下的web.config中的using System.Web.Optimization删掉 如下,Area文件目录找到Web.config Web.conf ...