upc组队赛6 Canonical Coin Systems【完全背包+贪心】
Canonical Coin Systems
题目描述
A coin system S is a finite (nonempty) set of distinct positive integers corresponding to coin values, also called denominations, in a real or imagined monetary system. For example, the coin system in common use in Canada is {1, 5, 10, 25, 100, 200}, where 1 corresponds to a 1-cent coin and 200 corresponds to a 200-cent (2-dollar) coin. For any coin system S, we assume that there is an unlimited supply of coins of each denomination, and we also assume that S contains 1,since this guarantees that any positive integer can be written as a sum of (possibly repeated) values in S.
Cashiers all over the world face (and solve) the following problem: For a given coin system and a positive integer amount owed to a customer, what is the smallest number of coins required to dispense exactly that amount? For example, suppose a cashier in Canada owes a customer 83 cents. One possible solution is 25+25+10+10+10+1+1+1, i.e.,8 coins, but this is not optimal, since the cashier could instead dispense 25 + 25 + 25 + 5 + 1 + 1 + 1, i.e., 7 coins (which is optimal in this case). Fortunately, the Canadian coin system has the nice property that the greedy algorithm always yields an optimal solution, as do the coin systems used in most countries. The greedy algorithm involves repeatedly choosing a coin of the
largest denomination that is less than or equal to the amount still owed, until the amount owed reaches zero. A coin system for which the greedy algorithm is always optimal is called canonical.
Your challenge is this: Given a coin system S = {c1, c2, . . . , cn }, determine whether S is canonical or non-canonical. Note that if S is non-canonical then there exists at least one counterexample, i.e., a positive integer x such that the minimum number of coins required to dispense exactly x is less than the number of coins used by the greedy algorithm. An example of a non-canonical coin system is {1, 3, 4}, for which 6 is a counterexample, since the greedy algorithm yields 4 + 1 + 1 (3 coins), but an optimal solution is 3 + 3 (2 coins). A useful fact (due to Dexter Kozen and Shmuel Zaks) is that if S is non-canonical, then the smallest counterexample is less than the sum of the two largest denominations.
输入
Input consists of a single case. The first line contains an integer n (2 ≤ n ≤ 100), the number of denominations in the coin system. The next line contains the n denominations as space-separated integers c1 c2 . . . cn, where c1 = 1 and c1 < c2 < . . . < cn ≤ 106.
输出
Output “canonical” if the coin system is canonical, or “non-canonical” if the coin system is non-canonical.
样例输入
4
1 2 4 8
样例输出
canonical
题意
有n种面额的货币,如果能保证所以金额,用贪心思想算出的货币张数(每次减先大面额的货币)和 正确的货币张数是相同的,就是规范的(输出canonical),如果贪心算出的货币张数比正确算出的多,那就是不规范的(输出non-canonical)
题解
正确的货币张数可以通过完全背包算出 转移方程 dp[i] = d[i - a[j] ] + 1;(dp[i]代表剩余金额为i时已经拥有的张数,a[j]代表第j张钱的面额)
代码
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define rep(i,a,n) for(int i=a;i<n;++i)
#define readc(x) scanf("%c",&x)
#define read(x) scanf("%d",&x)
#define sca(x) scanf("%d",&x)
#define read2(x,y) scanf("%d%d",&x,&y)
#define read3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define print(x) printf("%d\n",x)
#define mst(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&-x
#define lson(x) x<<1
#define rson(x) x<<1|1
#define pb push_back
#define mp make_pair
typedef long long ll;
typedef pair<ll,ll> P;
const int INF =0x3f3f3f3f;
const int inf =0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 105;
const int maxn =2000010;
using namespace std;
int n;
int a[maxn],dp[maxn];
int main(){
sca(n);
for(int i = 0; i < n; i++)
sca(a[i]);
sort(a,a+n);
int maxl = a[n - 1] * 2;
for(int i = 0; i < maxl; i++) dp[i] = INF;
dp[0] = 0;
int flag = 1;
for(int i = 1; i < maxl; i++){
for(int j = 0; j < n; j++){
if(a[j] <= i)
dp[i] = min(dp[i], dp[i - a[j]] + 1); //背包
}
int cnt = 0;
int sum = i;
int pos = n - 1;
while(sum){ //贪心
while(sum >= a[pos]){
sum -= a[pos];
cnt ++;
}
pos--;
}
if(cnt > dp[i]) flag = 0; //不等就是不规范
}
if(flag) printf("canonical\n");
else printf("non-canonical\n");
return 0;
}
upc组队赛6 Canonical Coin Systems【完全背包+贪心】的更多相关文章
- Canonical Coin Systems【完全背包】
问题 C: Canonical Coin Systems 时间限制: 1 Sec 内存限制: 128 MB 提交: 200 解决: 31 [提交] [状态] [命题人:admin] 题目描述 A ...
- 集训第四周(高效算法设计)L题 (背包贪心)
Description John Doe is a famous DJ and, therefore, has the problem of optimizing the placement of ...
- uva674 Coin Change ——完全背包
link:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA-674 Coin Change---完全背包
题目链接: https://vjudge.net/problem/UVA-674 题目大意: 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 思路: 每 ...
- Light oj 1233 - Coin Change (III) (背包优化)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1233 题目就不说明了. 背包的二进制优化,比如10可以表示为1 2 4 3,而 ...
- [luoguP1474] 货币系统 Money Systems(背包)
传送门 背包 ——代码 #include <cstdio> #include <iostream> #define LL long long int v, n; LL f[10 ...
- codeforces 284 E. Coin Troubles(背包+思维)
题目链接:http://codeforces.com/contest/284/problem/E 题意:n种类型的硬币,硬币的面值可能相同,现在要在满足一些限制条件下求出,用这些硬币构成t面值的方案数 ...
- upc组队赛17 Bits Reverse【暴力枚举】
Bits Reverse 题目链接 题目描述 Now given two integers x and y, you can reverse every consecutive three bits ...
- upc组队赛3 Chaarshanbegaan at Cafebazaar
Chaarshanbegaan at Cafebazaar 题目链接 http://icpc.upc.edu.cn/problem.php?cid=1618&pid=1 题目描述 Chaars ...
随机推荐
- 控件识别工具Inspect.exe下载
一.Inspect.exe 控件识别工具.官网上说通过下载安装Windows SDK后,可以在目录C:\Program Files (x86)\Microsoft SDKs\Windows Kits\ ...
- Shell逻辑运算符及表达式
一. 运算符总结说明 1. 条件运算符 运算符号 代表意义 应用 说明 = 等于 整型或字符串比较: str1 = str2 字符串str1 和字符串str2 相等时返回真,如果在[]中,只能是字符串 ...
- 神他么奇怪NoClassDefFoundError
javaweb 项目,部署在Tomcat服务器 十分奇葩的问题 之前一直好好的,今天突然就给报错.代码没动过.真是奇葩.创建User对象报NoClassDefFoundError, User类是一个普 ...
- USACO 6.1 章节
Postal Vans 题目大意 4*n的网格,要经过所有点的有向有环,不重复经过点的路径总数 n<=1000 题解 显然 插头dp 以4为切面 问题是,会发现 超精度 解决呢要么实现高精度,要 ...
- How many groups(DP)
题意: 定义:设M为数组a的子集(元素可以重复),将M中的元素排序,若排序后的相邻两元素相差不超过2,则M为a中的一个块,块的大小为块中的元素个数 给出长度为n的数组a,1<=n<=200 ...
- 【读书笔记】:MIT线性代数(4):Independence, Basis and Dimension
Independence: The columns of A are independent when the nullspace N (A) contains only the zero vecto ...
- APP测试功能点
1.使用APP时手机耗电情况 2.APP占用手机内存 3.APP在不同网络下的使用情况(WiFi/4G/3G/2G) 4.APP安装包大小 5.APP流量消耗 6.APP支持系统版本(android, ...
- mysql for Mac 下创建数据表中文显示为?的解决方法
在我的绝版Mac mini下安装了mysql 5.7版本,实例中,在通过load data 导入数据时发现表中的中文显示为 ? 通过百度,发现多个版本的解决方法,将其中一个成功解决的方法贴上来: 大 ...
- Python 学习笔记14 类 - 使用类和实例
当我们熟悉和掌握了怎么样创建类和实例以后,我们编程中的大多数工作都讲关注在类的简历和实例对象使用,修改和维护上. 结合实例我们来进一步的学习类和实例的使用: 我们新建一个汽车的类: #-*- codi ...
- shape和reshape
import numpy as np a = np.array([1,2,3,4,5,6,7,8]) #一维数组 print(a.shape[0]) #值为8,因为有8个数据 print(a.shap ...