Minimum Cut

Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)
Total Submission(s): 769    Accepted Submission(s): 340

Problem Description
Given a simple unweighted graph G (an undirected graph containing no loops nor multiple edges) with n nodes and m edges. Let T be a spanning tree of G.
We say that a cut in G respects T if it cuts just one edges of T.

Since love needs good faith and hypocrisy return for only grief, you should find the minimum cut of graph G respecting the given spanning tree T.

 
Input
The input contains several test cases.
The first line of the input is a single integer t (1≤t≤5) which is the number of test cases.
Then t test cases follow.

Each test case contains several lines.
The first line contains two integers n (2≤n≤20000) and m (n−1≤m≤200000).
The following n−1 lines describe the spanning tree T and each of them contains two integers u and v corresponding to an edge.
Next m−n+1 lines describe the undirected graph G and each of them contains two integers u and v corresponding to an edge which is not in the spanning tree T.

 
Output
For each test case, you should output the minimum cut of graph G respecting the given spanning tree T.
 
Sample Input
1
4 5
1 2
2 3
3 4
1 3
1 4
 
Sample Output
Case #1: 2
 
Source
 
题意:在G中有T,问G 最小割中有且仅有一割在 T  中的最小割是多少。
 

考虑每条不属 于 T   边  对 生成树 T  树 边 的覆盖次数。

每条树边被覆盖的次数其实就是断裂这条树边后还需断裂的新边数。

 
在m-n-1行中都是T中没有的边,添加了(u, v)之后,v中的子节点,叶子节点都可以和u联系,那么在求最小割的时候就要删除这条边,使得G中 变成两个由 u 和v 构成的不连通的图。

用cnt 存该点需要被断裂几次,即断裂这条边后 还需要断裂几条边可以使G 不连通。遍历求最小值即最小割

 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <cstring> using namespace std; #define INF 0x3f3f3f3f
#define min(a,b) (a<b?a:b)
#define N 100005 vector< vector<int> > G;
int deep[N], f[N], cnt[N]; void dfs(int u, int fa, int step)
{
deep[u] = step;
cnt[u] = ;
f[u] = fa;
int len = G[u].size();
for(int i = ; i < len; i++)
{
int v = G[u][i];
if(v != fa)
dfs(v, u, step+);
}
} void Lca(int x, int y)
{
while(x != y)
{
if(deep[x] >= deep[y])
{
cnt[x]++;
x = f[x];
}
else
{
cnt[y]++;
y = f[y];
}
}
} int main()
{
int t, i, a, b, n, m, l = ;
scanf("%d", &t);
while(t--)
{
G.resize(N);
G.clear();
scanf("%d%d", &n, &m);
for(i = ; i < n; i++)
{
scanf("%d%d", &a, &b);
G[a].push_back(b);
G[b].push_back(a);
}
dfs(, , );
for(; i <= m; i++)
{
scanf("%d%d", &a, &b);
Lca(a, b);
}
int ans = INF;
for(i = ; i <= n; i++)
ans = min(ans, cnt[i]);
printf("Case #%d: %d\n", l++, ans);
}
return ;
}

Minimum Cut的更多相关文章

  1. POJ Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9302   Accepted: 3902 Case ...

  2. POJ 2914 Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9319   Accepted: 3910 Case ...

  3. hdu 5452 Minimum Cut 树形dp

    Minimum Cut Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...

  4. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

  5. HDU 6214.Smallest Minimum Cut 最少边数最小割

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  6. HDU 6214 Smallest Minimum Cut(最少边最小割)

    Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...

  7. Smallest Minimum Cut HDU - 6214(最小割集)

    Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Oth ...

  8. HDU - 6214:Smallest Minimum Cut(最小割边最小割)

    Consider a network G=(V,E) G=(V,E) with source s s and sink t t . An s-t cut is a partition of nodes ...

  9. hdu 6214 Smallest Minimum Cut[最大流]

    hdu 6214 Smallest Minimum Cut[最大流] 题意:求最小割中最少的边数. 题解:对边权乘个比边大点的数比如300,再加1 ,最后,最大流对300取余就是边数啦.. #incl ...

  10. HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】

    Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...

随机推荐

  1. python+selenium切换窗口(获取句柄信息)

    current_window_handle:获得当前窗口句柄: window_handles:返回所有窗口的句柄到当前会话: switch_to.window(suoyou[0]) ========= ...

  2. python+selenium控制浏览器窗口(刷新、前进、后退、退出浏览器)

    调用说明: driver.属性值 变量说明: 1.driver.current_url:用于获得当前页面的URL 2.driver.title:用于获取当前页面的标题 3.driver.page_so ...

  3. 期货、股指期权、ETF期权

    期货与期权: 期权是指一种合约,该合约赋予持有人在某一特定日期或该日之前的任何时间以固定价格购进或售出某种资产的权利. 期货是标准化的合约,赋予参与者在未来的某个时间点以约定好的一个价格去买入或者卖出 ...

  4. C++中构造函数的手动和自动调用方式

    1,对象的构造通过构造函数来完成,和类名相同且没有返回值,这个时候只有参   数一个特性,构造函数可以自定义参数,这个参数一般而言就是对类进行初始  化来使用的:带有参数的构造函数的意义在于可以使得每 ...

  5. 【洛谷 P1879】【[USACO06NOV]玉米田Corn Fields】

    题目: 链接 思路: Q:如何想到是状压DP? A:那是因为(我看了标签)\(1 ≤ M ≤ 12; 1 ≤ N ≤ 12\),\(2 ^ {12}\) 不过才...(Win7计算器使用中)\(409 ...

  6. mac键盘在ubuntu下开启fn功能按键

    转载:http://wiki.ubuntu.org.cn/UbuntuHelp:AppleKeyboard Change Function Key behavior This section of t ...

  7. 增强 Jupyter Notebook的功能

    增强 Jupyter Notebook的功能 Jupyter Notebook 是所有开发者共享工作的神器,它为共享 Notebooks 提供了一种便捷方式:结合文本.代码和图更快捷地将信息传达给受众 ...

  8. 搜索专题: HDU1428漫步校园

    漫步校园 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  9. Chrome开发者工具详解(四)之Elements、Console、Sources面板

    Elements面板 实时编辑DOM节点和CSS样式 双击DOM树视图里面的节点,可以实时编辑标签属性,修改的效果会立刻反应在浏览器里 点击右侧Style面板,可以实时修改CSS的属性值,这里面的所有 ...

  10. wordpress数据库结构以及数据表之间的关系

    默认WordPress一共有以下11个表.这里加上了默认的表前缀 wp_ . wp_commentmeta:存储评论的元数据 wp_comments:存储评论 wp_links:存储友情链接(Blog ...