Minimum Cut
Minimum Cut
Time Limit: 3000/2000 MS (Java/Others) Memory Limit: 65535/102400 K (Java/Others)
Total Submission(s): 769 Accepted Submission(s): 340
We say that a cut in G respects T if it cuts just one edges of T.
Since love needs good faith and hypocrisy return for only grief, you should find the minimum cut of graph G respecting the given spanning tree T.
The first line of the input is a single integer t (1≤t≤5) which is the number of test cases.
Then t test cases follow.
Each test case contains several lines.
The first line contains two integers n (2≤n≤20000) and m (n−1≤m≤200000).
The following n−1 lines describe the spanning tree T and each of them contains two integers u and v corresponding to an edge.
Next m−n+1 lines describe the undirected graph G and each of them contains two integers u and v corresponding to an edge which is not in the spanning tree T.
考虑每条不属 于 T 边 对 生成树 T 树 边 的覆盖次数。
每条树边被覆盖的次数其实就是断裂这条树边后还需断裂的新边数。
用cnt 存该点需要被断裂几次,即断裂这条边后 还需要断裂几条边可以使G 不连通。遍历求最小值即最小割
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <cstring> using namespace std; #define INF 0x3f3f3f3f
#define min(a,b) (a<b?a:b)
#define N 100005 vector< vector<int> > G;
int deep[N], f[N], cnt[N]; void dfs(int u, int fa, int step)
{
deep[u] = step;
cnt[u] = ;
f[u] = fa;
int len = G[u].size();
for(int i = ; i < len; i++)
{
int v = G[u][i];
if(v != fa)
dfs(v, u, step+);
}
} void Lca(int x, int y)
{
while(x != y)
{
if(deep[x] >= deep[y])
{
cnt[x]++;
x = f[x];
}
else
{
cnt[y]++;
y = f[y];
}
}
} int main()
{
int t, i, a, b, n, m, l = ;
scanf("%d", &t);
while(t--)
{
G.resize(N);
G.clear();
scanf("%d%d", &n, &m);
for(i = ; i < n; i++)
{
scanf("%d%d", &a, &b);
G[a].push_back(b);
G[b].push_back(a);
}
dfs(, , );
for(; i <= m; i++)
{
scanf("%d%d", &a, &b);
Lca(a, b);
}
int ans = INF;
for(i = ; i <= n; i++)
ans = min(ans, cnt[i]);
printf("Case #%d: %d\n", l++, ans);
}
return ;
}
Minimum Cut的更多相关文章
- POJ Minimum Cut
Minimum Cut Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 9302 Accepted: 3902 Case ...
- POJ 2914 Minimum Cut
Minimum Cut Time Limit: 10000MS Memory Limit: 65536K Total Submissions: 9319 Accepted: 3910 Case ...
- hdu 5452 Minimum Cut 树形dp
Minimum Cut Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=54 ...
- POJ 2914 Minimum Cut 最小割图论
Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...
- HDU 6214.Smallest Minimum Cut 最少边数最小割
Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Oth ...
- HDU 6214 Smallest Minimum Cut(最少边最小割)
Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...
- Smallest Minimum Cut HDU - 6214(最小割集)
Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Oth ...
- HDU - 6214:Smallest Minimum Cut(最小割边最小割)
Consider a network G=(V,E) G=(V,E) with source s s and sink t t . An s-t cut is a partition of nodes ...
- hdu 6214 Smallest Minimum Cut[最大流]
hdu 6214 Smallest Minimum Cut[最大流] 题意:求最小割中最少的边数. 题解:对边权乘个比边大点的数比如300,再加1 ,最后,最大流对300取余就是边数啦.. #incl ...
- HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】
Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...
随机推荐
- centos6.9 安装mysql8
centos6.9 安装 mysql8 # 安装mysql8 1.下载https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.16-2.el6.x86 ...
- MySQL-快速入门(6)连接查询、子查询、正则表达式查询、数据的插入删除更新
1.内连接查询:inner join ... on 只有满足条件的记录才能够出现在结果关系中,即完全相等.自连接查询是一种特殊的内连接查询. 2.外连接查询: 1>左外连接 / 左连接:返回包括 ...
- Strust2+POI导出exel表格且解决文件名中文乱码/不显示
下载并导入项目[poi.3.17.jar] strust.xml <action name="returnLate_*" class="com.stureturnl ...
- centos6配置本地yum源
在无法访问外网时,yum安装软件会失败,这时候可以配置yum源为本地的镜像iso来解决这个问题 1. 使用Xftp上传iso镜像文件到服务器 2. 使用如下命令新建挂载点并挂载 sudo mkdir ...
- 05: 常用反扒机制 & 解决方法
1.1 常用反扒机制 参考博客:https://blog.csdn.net/python36/article/details/90174300 1.header 浏览器的请求头 header中添 ...
- while与格式化的练习
练习 判断下列逻辑语句的结果,一定要自己先分析 1)1 > 1 or 3 < 4 or 4 > 5 and 2 > 1 and 9 > 8 or 7 < 6 2)n ...
- React事件绑定的几种方式对比
React事件绑定 由于类的方法默认不会绑定this,因此在调用的时候如果忘记绑定,this的值将会是undefined.通常如果不是直接调用,应该为方法绑定this.绑定方式有以下几种: 1. 在构 ...
- 根据日志来源的不同生成不同的index索引
使用filebeat收集系统日志,不同应用的日志,然后把这些日志传输给Logstash,再然后交由elasticsearch处理,那么如何区分不同的日志来源呢? filebeat.yml配置文件中不启 ...
- RabbitMQ事务和Confirm发送方消息确认
RabbitMQ事务和Confirm发送方消息确认——深入解读 RabbitMQ系列文章 RabbitMQ在Ubuntu上的环境搭建 深入了解RabbitMQ工作原理及简单使用 RabbitMQ交换器 ...
- java的idea项目文件夹合并,怎么分开
一,如下图所示 二,只需要将这个去掉