原文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.76.4705

发表在:PRL 1996

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

考虑一维的情况,假设map为f(x), 我们的目标是去估计不动点x*=f(x*)接下来,我们考虑下面的变换

其中,

对于k=0的情况,我们可以有几何的解释,如下图,

根据阴影的两个三角形的斜边的斜率关系可以得到下面的等式

一个特例,当f(x)=x*+a(x-x*), 我们有

对于f(x)为一般的非线性函数以及k!=0,变换后的点都会集中在x*的线性区域的附近,并且我们可以证明变化后的点的密度函数有下面的关系,

PS: 也就是说,变换后的点,在x*出,有奇异性,如果用有限的数据模拟,将会在x*出,出现一个sharp的峰.

下面简单推到下上面的密度函数。我们降变换的map重写写成下面的形式,

其中,

注意到,对于不动点x*,下面的等式于k是无关的

假设为x的分布函数,那么我们有

其中,

所以我们可以看到出现奇异的地方在

  1)的地方;

  2)奇异的地方,

通过求g(x,k) 对于x的导数,我们发现,g'=0在不动点x*处 (i.e., f(x*)=x*。通过泰勒展开,我们有,

并且,

综上,我们得到,

也就是说x*也是上面这个密度函数的奇异点,在这个奇异点,用有限数据进行模拟的时候,会有一个sharp的峰

但是,我们需要注意的是,上面说的sharp的峰,可能会是虚假的峰,i.e., 不是由于fixed point引起的。因为虚假的峰,可能是由于

  1)ρ(x)的奇异性

  2)g'(x)=0

引起的,而x并非fixed point.

为了消除这些虚假的峰,我们注意到这些虚假的峰是于k的取值有关的。所以我们只需要取不同的k,然后平均,那么虚假的峰就会消除,而真实的峰就会保留

Example

考虑logistic map

f(x)= ­ rx(1-x), r=3.092, k=0,

一共有4个sharp的峰,

  1)真实的峰,

  2)虚假的峰 -- ρ(x)的比较强的奇异性:  和

  3)虚假的峰 -- g'为0的地方(不是fixed point): 

 当k随机取500个值的时候,虚假的峰都消失了,真实的峰保留了。

Detecting Unstable Periodic Orbits in Chaotic Experimental Data (解析)的更多相关文章

  1. E. Copying Data 解析(線段樹)

    Codeforce 292 E. Copying Data 解析(線段樹) 今天我們來看看CF292E 題目連結 題目 給你兩個陣列\(a,b\),有兩種操作:把\(a\)的一段複製到\(b\),或者 ...

  2. json data 解析demo

    json data: demo: JsonObject jsonObject= JsonHandle.getAsJsonObject(city_dataInfo).get("data&quo ...

  3. 深数据 - Deep Data

    暂无中文方面的信息,E文的也非常少,原文连接: A lot of great pieces have been written about the relatively recent surge in ...

  4. Data of Ch5 --Dual rotor

    * Results *Conclusion*- little effect of rear rotor on Cp_1- Cp1 is independent of TI** TI effect on ...

  5. airfoil polar data during post stall stages (high AOA)

    airfoil polar data during post stall stages (high AOA) Table of Contents 1. airfoil polar during pos ...

  6. HTML5 自定义属性 data-* 和 jQuery.data 详解

    新的HTML5标准允许你在普通的元素标签里,嵌入类似data-*的属性,来实现一些简单数据的存取.它的数量不受限制,并且也能由javascript动态修改,也支持CSS选择器进行样式设置.这使得dat ...

  7. Spring Data JPA 简单查询--方法定义规则

    一.常用规则速查 1  And 并且2  Or  或3  Is,Equals 等于4  Between  两者之间5  LessThan 小于6  LessThanEqual   小于等于7  Gre ...

  8. html 5实用特性之data属性

    HTML 5之前,我们必须依赖于class和rel属性来存储需要在网站中使用的数据片段,这种做法有时会在网站的外观和实用性之间产生冲突.而HTML 5 Data属性的存在就能很好满足需要. HTML5 ...

  9. jQuery数据缓存$.data 的使用以及源码解析

    一.实现原理: 对于DOM元素,通过分配一个唯一的关联id把DOM元素和该DOM元素的数据缓存对象关联起来,关联id被附加到以jQuery.expando的值命名的属性上,数据存储在全局缓存对象jQu ...

随机推荐

  1. ANSI C遍历二维数组指针地址

    #include <stdio.h> int main() { ][] = {,,,}; //等价于{{1,2},{3,4}}; ; i < ; i++) { ; j < ; ...

  2. centos7安装VuePress

    VuePress可以帮你快速建站,使用MarkDown语法生成静态html yum install -y gcc-c++ make curl -sL https://rpm.nodesource.co ...

  3. Core 3 WPF MVVM框架 Prism系列之数据绑定

    一.安装Prism 1.使用程序包管理控制台# Install-Package Prism.Unity -Version 7.2.0.1367 也可以去掉‘-Version 7.2.0.1367’获取 ...

  4. Linux 如何上传/下载文件

    注: 如果在操作中,提示没有权限请使用" su - "命令来切换当前账号至" root " 账号 一 .    使用 rz / sz 命令 1 .  登陆 Li ...

  5. Python爬虫学习==>第十一章:分析Ajax请求-抓取今日头条信息

    学习目的: 解决AJAX请求的爬虫,网页解析库的学习,MongoDB的简单应用 正式步骤 Step1:流程分析 抓取单页内容:利用requests请求目标站点,得到单个页面的html代码,返回结果: ...

  6. Linux C\C++基础——数组形参的使用

    1.数组形参 ]) void fun(int a[]) void fun(int *a) ],int n) void fun(char*p[],int n) void fun(char**p,int ...

  7. 在C语言中函数及其调用过程

    目录 函数 C语言中的变参函数 函数的本质是什么 内存区域的区分技巧 函数的调用过程 栈帧的概念 调用过程细节 按照约定传参 函数 如果一个函数有声明没实现,那么就会出现链接错误: 以上代码会出现链接 ...

  8. max-http-header-size 引发的一起血案(附:查gc方法)

    最近在做项目的时候发现其中一个服务出现了性能上的问题,项目启动后,出现内存溢出异常. 查看堆内存使用情况 分析然后找到占用空间的类,当时是byte[]占用99%的空间,然后点开查看实例发现是http占 ...

  9. jvm 调优工具 i

    https://blog.csdn.net/wait_notify/article/details/70268194 https://blog.csdn.net/a718515028/article/ ...

  10. PTA(Basic Level)1036.跟奥巴马一起编程

    美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014 年底,为庆祝"计算机科学教育周"正式启动,奥巴马编写了很简单的计算机 ...