【NOIP2016提高A组集训第14场11.12】随机游走
题目
YJC最近在学习图的有关知识。今天,他遇到了这么一个概念:随机游走。随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次。YJC很聪明,他很快就学会了怎么跑随机游走。为了检验自己是不是欧洲人,他决定选一棵树,每条边边权为1,选一对点s和t,从s开始随机游走,走到t就停下,看看要走多长时间。但是在走了10000000步之后,仍然没有走到t。YJC坚信自己是欧洲人,他认为是因为他选的s和t不好,即从s走到t的期望距离太长了。于是他提出了这么一个问题:给一棵n个点的树,问所有点对(i,j)(1≤i,j≤n)中,从i走到j的期望距离的最大值是多少。YJC发现他不会做了,于是他来问你这个问题的答案。
分析
套路:
首先知道期望是可以累加的,即i通过j去到k的期望,等于i去到j的期望加j去到k的期望。
所以令d[i]表示i的出度,F[i]表示从i到i的父亲的期望,G[i]表示i的父亲到i的期望,j表示i其中任意一个儿子,k表示i的父亲,l表示k其中任意一个儿子,e表示k的父亲。
很容易推出:
\]
\]
简化后得
\]
\]
枚举(i,j)的lca,
记录在以lca为根的子树中,
从lca出发,和到达lca的最大期望值,
为了防止两个最大值的lca不是枚举了lca,记录枚举儿子中的最大值,
取最大次大值比较。
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=100005;
using namespace std;
int f[N],g[N];
int n,m,next[N*3],last[N*3],to[N*3],d[N],tot,deep[N],mx[N*2][8],ans;
int bj(int x,int y)
{
next[++tot]=last[x];
last[x]=tot;
to[tot]=y;
}
int dg(int x,int fa)
{
f[x]=d[x];
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa)
{
deep[j]=deep[x]+1;
dg(j,x);
f[x]+=f[j];
}
}
}
int dg1(int x,int fa)
{
int sum1f=0;
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa)
{
g[j]+=g[x]+d[x];
sum1f+=f[j];
}
}
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa)
{
g[j]+=sum1f-f[j];
dg1(j,x);
}
}
}
int dg2(int x,int fa)
{
for(int i=last[x];i;i=next[i])
{
int j=to[i];
if(j!=fa)
{
dg2(j,x);
if(mx[j][0]+f[j]>=mx[x][0])
{
mx[x][1]=mx[x][0];
mx[x][0]=mx[j][0]+f[j];
mx[x][5]=mx[x][4];
mx[x][4]=j;
}
else
if(mx[j][0]+f[j]>mx[x][1])
{
mx[x][1]=mx[j][0]+f[j];
mx[x][5]=j;
}
if(mx[j][2]+g[j]>=mx[x][2])
{
mx[x][3]=mx[x][2];
mx[x][2]=mx[j][2]+g[j];
mx[x][7]=mx[x][6];
mx[x][6]=j;
}
else
if(mx[j][2]+g[j]>mx[x][3])
{
mx[x][3]=mx[j][2]+g[j];
mx[x][7]=j;
}
}
}
if(mx[x][4]!=mx[x][6])
{
if(mx[x][0]+mx[x][2]>ans) ans=mx[x][0]+mx[x][2];
}
if(mx[x][5]!=mx[x][6])
{
if(mx[x][1]+mx[x][2]>ans) ans=mx[x][1]+mx[x][2];
}
if(mx[x][4]!=mx[x][7])
{
if(mx[x][0]+mx[x][3]>ans) ans=mx[x][0]+mx[x][3];
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n-1;i++)
{
int x,y;
scanf("%d%d",&x,&y);
d[x]++;
d[y]++;
bj(x,y);
bj(y,x);
}
deep[1]=1;
dg(1,0);
dg1(1,0);
dg2(1,0);
printf("%d.00000",ans);
}
【NOIP2016提高A组集训第14场11.12】随机游走的更多相关文章
- 【NOIP2016提高A组集训第14场11.12】随机游走——期望+树形DP
好久没有写过题解了--现在感觉以前的题解弱爆了,还有这么多访问量-- 没有考虑别人的感受,没有放描述.代码,题解也写得歪歪扭扭. 并且我要强烈谴责某些写题解的代码不打注释的人,像天书那样,不是写给普通 ...
- 【JZOJ4890】【NOIP2016提高A组集训第14场11.12】随机游走
题目描述 YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己 ...
- 【JZOJ4889】【NOIP2016提高A组集训第14场11.12】最长公共回文子序列
题目描述 YJC最近在学习字符串的有关知识.今天,他遇到了这么一个概念:最长公共回文子序列.一个序列S,如果S是回文的且分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- 【JZOJ4888】【NOIP2016提高A组集训第14场11.12】最近公共祖先
题目描述 YJC最近在学习树的有关知识.今天,他遇到了这么一个概念:最近公共祖先.对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. ...
- JZOJ 【NOIP2016提高A组集训第16场11.15】兔子
JZOJ [NOIP2016提高A组集训第16场11.15]兔子 题目 Description 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3 ...
- JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线
JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...
- 【JZOJ4893】【NOIP2016提高A组集训第15场11.14】过河
题目描述 数据范围 解法 由于同一个点,同一个圆盘最多只会走一次. 把(i,j)当作一个点,表示第i个点,放第i个圆盘. 那么就可以使用最短路. 时间复杂度为O(n4∗k). 事实上存在冗余圆盘,一个 ...
- 【NOIP2016提高A组集训第4场11.1】平衡的子集
题目 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 分析 如果暴力枚举每个人被分到哪 ...
- 【JZOJ4841】【NOIP2016提高A组集训第4场11.1】平衡的子集
题目描述 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 数据范围 40%的数据满足: ...
随机推荐
- Kafka集群搭建和配置
Kafka配置优化 https://www.jianshu.com/p/f62099d174d9 1.安装&配置 下载tar包 解压后即可使用 修改配置文件 将server.propertie ...
- 使用canvas实现对图片的批量打码
最近有个需求,利用h5的canvas对图片一些涉及个人隐私的地方进行打码再上传,而且最好能实现批量打码.意思是在一张图片上对哪些地方做了打码,后续的所有图片都在同样的地方也可以自动打上码,不用人工一张 ...
- UOJ#48最大矩形面积
题面 这是一道标准的单调栈的题目,但是由于题目的个例性,该题对于前后两数等于的情况并无额外处理,so也确实是让这题简单了一点 也没什么好说的直接上代码吧 #include<iostream> ...
- Linux vim文件编辑器使用
学习目标: 通过本实验熟练vim的使用. 步骤: 1.将用户家目录的ls结果重定向到vimfile.txt 2.查看rh124第403页实验要求,并完成 参考命令: 复制文件前,需要先建立文件,教材上 ...
- token防爆破?
先尝试例如删除token 猜token的值等操作 不行就burp抓包 选择Pitchfork模式.选择要爆破的参数 线程设置为1显然只有获取上一个请求返回的taken值才能,做下一次请求 点击Ref ...
- HDU 1003 Max Sum (动态规划 最大区间和)
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- Springboot与springcloud
1.什么是Spring Boot? 它简化了搭建Spring项目,自动配置Spring,简化maven配置,自带tomcat无需部署war包,创建独立的spring引用程序main方法运行: 2.Sp ...
- SpringBoot_01
一.初识springboot 个人总结:springboot是一个开发更加便捷的spring的技术框架,通过引入启动器便可以快捷的让spring框架和其他框架进行整合, springboot很容易上手 ...
- 内核中likely和unlikely宏定义
在内核代码中经常会看到unlikely和likely的踪影.他们实际上是定义在 linux/compiler.h 中的两个宏. #define likely(x) __builtin_expec ...
- 从入门到自闭之python三大器--装饰器
开放封闭原则:在不修改源代码及调用方式,对功能进行额外添加就是开放封闭原则 开放:对代码的扩展进行开发 封闭:修改源代码 装饰(额外功能) 器:工具(函数) 普通版: # print(time.tim ...