D. 1-2-K Game

time limit per test2 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

Alice and Bob play a game. There is a paper strip which is divided into n + 1 cells numbered from left to right starting from 0. There is a chip placed in the n-th cell (the last one).

Players take turns, Alice is first. Each player during his or her turn has to move the chip 1, 2 or k cells to the left (so, if the chip is currently in the cell i, the player can move it into cell i - 1, i - 2 or i - k). The chip should not leave the borders of the paper strip: it is impossible, for example, to move it k cells to the left if the current cell has number i < k. The player who can't make a move loses the game.

Who wins if both participants play optimally?

Alice and Bob would like to play several games, so you should determine the winner in each game.

Input

The first line contains the single integer T (1 ≤ T ≤ 100) — the number of games. Next T lines contain one game per line. All games are independent.

Each of the next T lines contains two integers n and k (0 ≤ n ≤ 109, 3 ≤ k ≤ 109) — the length of the strip and the constant denoting the third move, respectively.

Output

For each game, print Alice if Alice wins this game and Bob otherwise.

Example

inputCopy

4

0 3

3 3

3 4

4 4

outputCopy

Bob

Alice

Bob

Alice

题意:

当前在n位置,每一次可以向左走1,2,或者k步,最左的位置是0,不能走到0的左边, 二人博弈问题,谁没法再走的时候就输掉,问先手必赢还是后手必赢。

思路:

首先确定的是 0位置是必输位置,因为 1 2 和k这三个位置可以一步就走到0位置,所以这3个位置是必赢位置,以此规律,我们可以递推出sg函数。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int sg[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\code_stream\\out.txt","w",stdout); int n,k;
n=100;
cin>>k;
sg[0]=0;
sg[1]=1;
sg[2]=1;
repd(i,3,n)
{
if((i-k)>=0)
{
if(sg[i-1]==0||sg[i-2]==0||sg[i-k]==0)
{
sg[i]=1;
}
}else
{
if(sg[i-2]==0||sg[i-1]==0)
{
sg[i]=1;
}
}
}
repd(i,0,n)
{
cout<<i<<" "<<sg[i]<<endl; } return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
通过sg函数打表分析可以得出, 有以下规律
如果k是3的倍数,那么sg函数是k+1长度的循环节,对循环节取模后,判断n是否是k,如果是k,那么k位置必赢,否则判断是否是3的倍数。
如果k不是3的倍数,那么判断n是否是3的倍数即可。 比赛时看错表,推出个错规律,wa了3次,深夜写这个博客算给自己一个记性吧。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\code_stream\\out.txt","w",stdout); int t;
ll n, k;
gbtb;
cin >> t;
while (t--)
{
cin >> n >> k;
if (k % 3 == 0)
{
n %= (k + 1);
if (n == k)
{
cout << "Alice" << endl;
} else
{
if (n % 3 == 0)
cout << "Bob" << endl;
else
cout << "Alice" << endl;
}
// return 0;
continue;
} if ((n % 3) == 0 )
{
cout << "Bob" << endl;
} else
{
cout << "Alice" << endl;
}
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Educational Codeforces Round 68 (Rated for Div. 2) D. 1-2-K Game (博弈, sg函数,规律)的更多相关文章

  1. Educational Codeforces Round 68 (Rated for Div. 2)---B

    http://codeforces.com/contest/1194/problem/B /* */ # include <bits/stdc++.h> using namespace s ...

  2. Educational Codeforces Round 68 (Rated for Div. 2)补题

    A. Remove a Progression 签到题,易知删去的为奇数,剩下的是正偶数数列. #include<iostream> using namespace std; int T; ...

  3. Educational Codeforces Round 68 (Rated for Div. 2) C. From S To T (字符串处理)

    C. From S To T time limit per test1 second memory limit per test256 megabytes inputstandard input ou ...

  4. Educational Codeforces Round 68 (Rated for Div. 2)D(SG函数打表,找规律)

    #include<bits/stdc++.h>using namespace std;int sg[1007];int main(){ int t; cin>>t; while ...

  5. Educational Codeforces Round 68 (Rated for Div. 2)-D. 1-2-K Game

    output standard output Alice and Bob play a game. There is a paper strip which is divided into n + 1 ...

  6. Educational Codeforces Round 68 (Rated for Div. 2)-C-From S To T

    You are given three strings ss, tt and pp consisting of lowercase Latin letters. You may perform any ...

  7. Educational Codeforces Round 90 (Rated for Div. 2) B. 01 Game(字符串博弈)

    题目链接:https://codeforces.com/contest/1373/problem/B 题意 给出一个二进制串 $s$,Alica 和 Bob 每次可以选择移去 $s$ 中的一个 $10 ...

  8. Educational Codeforces Round 63 (Rated for Div. 2) B. Game with Telephone Numbers 博弈思维+模拟+贪心思维

    题意:博弈题面  给出一个数字序列 (>=11)  有两个人任意删除数字 直到 数字只剩下11位 如果删除后的数字串开头是8那么就是第一个赢 否则就是第二个人赢 第一个人先手  数字序列一定是奇 ...

  9. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

随机推荐

  1. String2LongUtil

    public class String2LongUtil { /** * String类型转换成date类型 * strTime: 要转换的string类型的时间, * formatType: 要转换 ...

  2. Java8 新特性之集合操作Stream

    Java8 新特性之集合操作Stream Stream简介 Java 8引入了全新的Stream API.这里的Stream和I/O流不同,它更像具有Iterable的集合类,但行为和集合类又有所不同 ...

  3. Bader分析

    一.背景 理查德·贝德(Richard Bader)开发了一种将分子分解为原子的直观方法.他对原子的定义纯粹基于电子电荷密度.Bader使用所谓的零磁通表面来划分原子.零通量表面是2D表面,其上电荷密 ...

  4. EDM邮件营销真的落伍了吗?

    很多朋友都觉得EDM邮件营销已经日暮西山了.难道EDM邮件营销真的落伍过时了吗?小编本文为大家讲解一下. 一.有数据为证:目前电子邮件仍然比较活跃,九成以上的用户每天至少查看一封邮件,并且6成以上的人 ...

  5. 阶段3 1.Mybatis_04.自定义Mybatis框架基于注解开发_3 基于注解的自定义再分析

    这里只需要 一是连接数据库的 二是映射的 注解是class的方式  dom4j技术获取xml的数据,这是xml的方式获取的下面几个关键的点 注解的方式回去dao类里面的几个主要的信息 User黄色的部 ...

  6. 32 位bitmap 内存存储 顺序 bgra 前3位 与23位一致。 都是 bgr 呵呵 与rgb 相反

    32 位bitmap     内存存储 顺序   bgra       前3位 与23位一致.   都是 bgr  呵呵 与rgb 相反

  7. 11 ORA-8102:Index Corruption解析

    11 ORA-8102:Index Corruption解析 [oracle@DSI ~]$ oerr ora 810208102, 00000, "index key not found, ...

  8. C#采集:图灵机器人信息

    Dictionary<string, string> users = new Dictionary<string, string>(); users.Add("use ...

  9. ugui拖拽

    整理了下以前写的 using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityE ...

  10. Android——LruCache源码解析

    以下针对 Android API 26 版本的源码进行分析. 在了解LruCache之前,最好对LinkedHashMap有初步的了解,LruCache的实现主要借助LinkedHashMap.Lin ...