Codeforces 360C DP 计算贡献
题意:给你一个长度为n的字符串,定义两个字符串的相关度为两个串对应的子串中第一个串字典序大于第二个串的个数。现在给你相关度,和第二个串,问满足条件的第一个串有多少个?
思路:设dp[i][j]为填了前i个字符,后面的字符和s相同,相关度为j的方案数。现在有两种转移:
1:i位置填的字符大于s[i], 那么我们假设i前面第一个与s不相等的位置是l(即s[l + 1]到s[i]是相等的), 那么相当于左端点在[l + 1, i], 右端点在[i, n]的区间都会产生贡x献,那么从dp[l][j - (n - i + 1) * (i - l)]转移过来(把后面的贡献去掉,就是dp[l][j - (n - i + 1) * (i - l)]),dp[i][j] += ('z' - s[i]) * (dp[l][j - (n - i + 1) * (i - l)]);
2:i位置填的数字小于等于s[i], 那么后面就没影响了,前面所有的l都可以转移:dp[i][j] += sum[j] * (s[i] - 'a), sum[j] 为dp[0][j]到dp[i - 1][j]的和。
代码:
#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
#define db double
#define pii pair<int, int>
using namespace std;
const int maxn = 2010;
const LL mod = 1000000007;
LL dp[maxn][maxn], sum[maxn];
char s[maxn];
int main() {
int n, k;
scanf("%d%d", &n, &k);
scanf("%s", s + 1);
dp[0][0] = 1;
sum[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= k; j++) {
for (int l = i - 1; l >= 0 && j - (n - i + 1) * (i - l) >= 0; l--) {
dp[i][j] = (dp[i][j] + ((LL)('z' - s[i]) * dp[l][j - (n - i + 1) * (i - l)]) % mod) % mod;
}
dp[i][j] = (dp[i][j] + ((LL)(s[i] - 'a') * sum[j]) % mod) % mod;
sum[j] = (sum[j] + dp[i][j]) % mod;
}
}
LL ans = 0;
for (int i = 0; i <= n; i++) {
ans = (ans + dp[i][k]) % mod;
}
printf("%lld\n", ans);
}
Codeforces 360C DP 计算贡献的更多相关文章
- Codeforces1238E. Keyboard Purchase(状压dp + 计算贡献)
题目链接:传送门 思路: 题目中的m为20,而不是26,显然在疯狂暗示要用状压来做. 考虑状压字母集合.如果想要保存字母集合中的各字母的顺序,那就和经典的n!的状态的状压没什么区别了,时间复杂度为O( ...
- Codeforces 1183H DP 计算子序列数目
题意及思路:https://blog.csdn.net/mmk27_word/article/details/93999633 第一次见这种DP,有点像退背包的思想,如果发现有可能因为字母相同和前面算 ...
- Codeforces 1167F(计算贡献)
要点 容易想到排序,然后对于每个数: 人的惯性思维做法是:\(a[i]*(rank1的+rank2的+-)\).然而解法巧妙之处在于直接把所有的加和当成一个系数,然后先假装所有情况系数都是1,接着往上 ...
- Codeforces 1178F DP
题意:有一张白纸条,你需要给这张纸条染色.染色从颜色1开始染色,每次选择纸条的一段染色时,这一段的颜色必须是相同的.现在给你染色后的纸条,问有多少种染色方案? F1: 思路:最开始的想法是以染色顺序为 ...
- Codeforces 1167 F Scalar Queries 计算贡献+树状数组
题意 给一个数列\(a\),定义\(f(l,r)\)为\(b_1, b_2, \dots, b_{r - l + 1}\),\(b_i = a_{l - 1 + i}\),将\(b\)排序,\(f(l ...
- Codeforces 1167F 计算贡献
题意:给你一个函数f,计算∑(i = 1 to n)(j = i to n) f(i, j).f(i, j)的定义是:取出数组中i位置到j位置的所有元素,排好序,然后把排好序的位置 * 元素 加起来. ...
- Codeforces Round #574 (Div. 2) D1. Submarine in the Rybinsk Sea (easy edition) 【计算贡献】
一.题目 D1. Submarine in the Rybinsk Sea (easy edition) 二.分析 简单版本的话,因为给定的a的长度都是定的,那么我们就无需去考虑其他的,只用计算ai的 ...
- Codeforces 360C Levko and Strings dp
题目链接:点击打开链接 题意: 给定长度为n的字符串s,常数k 显然s的子串一共同拥有 n(n-1)/2 个 要求找到一个长度为n的字符串t,使得t相应位置的k个子串字典序>s #include ...
- Codeforces Round #574 (Div. 2) D2. Submarine in the Rybinsk Sea (hard edition) 【计算贡献】
一.题目 D2. Submarine in the Rybinsk Sea (hard edition) 二.分析 相比于简单版本,它的复杂地方在于对于不同长度,可能对每个点的贡献可能是有差异的. 但 ...
随机推荐
- windows平台搭建Mongo数据库复制集(类似集群)(三)
在本篇里面,咱们重点总结一下复制集,以及分析一下它的工作原理 一.常见场景 应用程序和数据库之间的网络连接丢失 计划停机.断电.数据库服务硬盘故障等等 复制可以进行故障转移,复制能让你在副本间均衡读负 ...
- loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...
- 分布式架构的CAP原理
CAP 定理的含义 一.分布式系统的三个指标 1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标. Consistency Availability Parti ...
- FMX Android ZIP解压中文乱码
在手机上解压了一个WINDOWS上的压缩文件, 发现中文是乱码的,解决方法如下: 找到System.zip.pas文件 将E := TEncoding.GetEncoding(437); 改为 E ...
- 1,MySQL常用函数
一,MySQL聚合函数 1,AVG()函数 AVG()函数是一个聚合函数,它用于计算一组值或表达式的平均值. AVG()函数的语法如下: AVG(DISTINCT expression) 例如有如下p ...
- 求1+2+3.。。。n的和
思路: 利用递归累加,逻辑运算符的短路运算. class Solution { public: int Sum_Solution(int n) { int result=n; result & ...
- flutter中的路由跳转
在前面的基本路由和命名路由中,都演示了如何进行路由跳转,并且在路由跳转以后,可以借用系统自带的按钮就行返回上一级,当然了,也可以自定义按钮返回上一级. 返回上一级 在前面的例子中,当从Home.dar ...
- [CSP-S模拟测试]:涂色游戏(DP+组合数+矩阵快速幂)
题目描述 小$A$和小$B$在做游戏.他们找到了一个$n$行$m$列呈网格状的画板.小$A$拿出了$p$支不同颜色的画笔,开始在上面涂色.看到小$A$涂好的画板,小$B$觉得颜色太单调了,于是把画板擦 ...
- [CSP-S模拟测试]:reverse(模拟)
题目传送门(内部题56) 输入格式 第一行包含一个整数:$T$,表示数据组数.接下来$T$行,每行包含两个字符串:$a\ b$. 输出格式 对于每组数据,如果存在$c$,输出最长的情况下字典序最大的$ ...
- nRF51822学习笔记 之 blinky_example
使用的开发板是nRF51822 AK II,爱板网做活动买的. 开发资料可以去这里下载:链接: http://pan.baidu.com/s/1f8pD8 密码: 741y