paper 161:python的Json数据解析
概念
序列化(Serialization):将对象的状态信息转换为可以存储或可以通过网络传输的过程,传输的格式可以是JSON、XML等。反序列化就是从存储区域(JSON,XML)读取反序列化对象的状态,重新创建该对象。
JSON(JavaScript Object Notation):一种轻量级数据交换格式,相对于XML而言更简单,也易于阅读和编写,机器也方便解析和生成,Json是JavaScript中的一个子集。
Python2.6开始加入了JSON模块,无需另外下载,Python的Json模块序列化与反序列化的过程分别是 encoding和 decoding
encoding:把一个Python对象编码转换成Json字符串 decoding:把Json格式字符串解码转换成Python对象 对于简单数据类型(string、unicode、int、float、list、tuple、dict),可以直接处理。
json.dumps方法对简单数据类型encoding:
import json
data = [{'a':"A",'b':(2,4),'c':3.0}]  #list对象
print "DATA:",repr(data)
data_string = json.dumps(data)
print "JSON:",data_string
输出:
DATA: [{'a':'A','c':3.0,'b':(2,4)}] #python的dict类型的数据是没有顺序存储的
JSON: [{"a":"A","c":3.0,"b":[2,4]}]
JSON的输出结果与DATA很相似,除了一些微妙的变化,如python的元组类型变成了Json的数组,Python到Json的编码转换规则是: 
json.loads方法处理简单数据类型的decoding(解码)转换
import json
data = [{'a':"A",'b':(2,4),'c':3.0}]  #list对象
data_string = json.dumps(data)
print "ENCODED:",data_string
decoded = json.loads(data_string)
print "DECODED:",decoded
print "ORIGINAL:",type(data[0]['b'])
print "DECODED:",type(decoded[0]['b'])
输出:
ENCODED: [{"a": "A", "c": 3.0, "b": [2, 4]}]
DECODED: [{u'a': u'A', u'c': 3.0, u'b': [2, 4]}]
ORIGINAL: <type 'tuple'>
DECODED: <type 'list'>
解码过程中,json的数组最终转换成了python的list,而不是最初的tuple类型,Json到Python的解码规则是: 
json的人文关怀
编码后的json格式字符串紧凑的输出,而且也没有顺序,因此dumps方法提供了一些可选的参数,让输出的格式提高可读性,如sort_keys是告诉编码器按照字典排序(a到z)输出。
import json
data = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
print 'DATA:', repr(data)
unsorted = json.dumps(data)
print 'JSON:', json.dumps(data)
print 'SORT:', json.dumps(data, sort_keys=True)
输出:
DATA: [{'a': 'A', 'c': 3.0, 'b': (2, 4)}]
JSON: [{"a": "A", "c": 3.0, "b": [2, 4]}]
SORT: [{"a": "A", "b": [2, 4], "c": 3.0}
indent参数根据数据格式缩进显示,读起来更加清晰:
import json
data = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
print 'DATA:', repr(data)
print 'NORMAL:', json.dumps(data, sort_keys=True)
print 'INDENT:', json.dumps(data, sort_keys=True, indent=2)
输出:
DATA: [{'a': 'A', 'c': 3.0, 'b': (2, 4)}]
NORMAL: [{"a": "A", "b": [2, 4], "c": 3.0}]
INDENT: [
  {
    "a": "A",
    "b": [
      2,
      4
    ],
    "c": 3.0
  }
]
separators参数的作用是去掉,,:后面的空格,从上面的输出结果都能看到", :"后面都有个空格,这都是为了美化输出结果的作用,但是在我们传输数据的过程中,越精简越好,冗余的东西全部去掉,因此就可以加上separators参数:
import json
data = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
print 'DATA:', repr(data)
print 'repr(data)             :', len(repr(data))
print 'dumps(data)            :', len(json.dumps(data))
print 'dumps(data, indent=2)  :', len(json.dumps(data, indent=2))
print 'dumps(data, separators):', len(json.dumps(data, separators=(',',':')))
输出:
DATA: [{'a': 'A', 'c': 3.0, 'b': (2, 4)}]
repr(data)             : 35
dumps(data)            : 35
dumps(data, indent=2)  : 76
dumps(data, separators): 29
skipkeys参数,在encoding过程中,dict对象的key只可以是string对象,如果是其他类型,那么在编码过程中就会抛出ValueError的异常。skipkeys可以跳过那些非string对象当作key的处理.
import json
data= [ { 'a':'A', 'b':(2, 4), 'c':3.0, ('d',):'D tuple' } ]
try:
    print json.dumps(data)
except (TypeError, ValueError) as err:
    print 'ERROR:', err
print
print json.dumps(data, skipkeys=True)
输出:
ERROR: keys must be a string
[{"a": "A", "c": 3.0, "b": [2, 4]}]
让json支持自定义数据类型
以上例子都是基于python的built-in类型的,对于自定义类型的数据结构,json模块默认是没法处理的,会抛出异常:TypeError xx is not JSON serializable,此时你需要自定义一个转换函数:
import json  
class MyObj(object):
    def __init__(self, s):
        self.s = s
    def __repr__(self):
        return '<MyObj(%s)>' % self.s
obj = .MyObj('helloworld')
try:
    print json.dumps(obj)
except TypeError, err:
    print 'ERROR:', err
#转换函数
def convert_to_builtin_type(obj):
    print 'default(', repr(obj), ')'
    # 把MyObj对象转换成dict类型的对象
    d = { '__class__':obj.__class__.__name__,
          '__module__':obj.__module__,
        }
    d.update(obj.__dict__)
    return d
print json.dumps(obj, default=convert_to_builtin_type)
输出:
ERROR: <MyObj(helloworld)> is not JSON serializable
default( <MyObj(helloworld)> )
{"s": "hellworld", "__module__": "MyObj", "__class__": "__main__"}
#注意:这里的class和module根据你代码的所在文件位置不同而不同
相反,如果要把json decode 成python对象,同样也需要自定转换函数,传递给json.loads方法的object_hook参数:
#jsontest.py
import json
class MyObj(object):
    def __init__(self,s):
        self.s = s
    def __repr__(self):
        return "<MyObj(%s)>" % self.s
def dict_to_object(d):
    if '__class__' in d:
        class_name = d.pop('__class__')
        module_name = d.pop('__module__')
        module = __import__(module_name)
        print "MODULE:",module
        class_ = getattr(module,class_name)
        print "CLASS",class_
        args = dict((key.encode('ascii'),value) for key,value in d.items())
        print 'INSTANCE ARGS:',args
        inst = class_(**args)
    else:
        inst = d
    return inst
encoded_object = '[{"s":"helloworld","__module__":"jsontest","__class__":"MyObj"}]'
myobj_instance = json.loads(encoded_object,object_hook=dict_to_object)
print myobj_instance
输出:
MODULE: <module 'jsontest' from 'E:\Users\liuzhijun\workspace\python\jsontest.py'>
CLASS <class 'jsontest.MyObj'>
INSTANCE ARGS: {'s': u'helloworld'}
[<MyObj(helloworld)>]
MODULE: <module 'jsontest' from 'E:\Users\liuzhijun\workspace\python\jsontest.py'>
CLASS <class 'jsontest.MyObj'>
INSTANCE ARGS: {'s': u'helloworld'}
[<MyObj(helloworld)>]
使用Encoder与Decoder类实现json编码的转换
JSONEncoder有一个迭代接口iterencode(data),返回一系列编码的数据,他的好处是可以方便的把逐个数据写到文件或网络流中,而不需要一次性就把数据读入内存.
import json
encoder = json.JSONEncoder()
data = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
for part in encoder.iterencode(data):
    print 'PART:', part
输出:
PART: [
PART: {
PART: "a"
PART: :
PART: "A"
PART: ,
PART: "c"
PART: :
PART: 3.0
PART: ,
PART: "b"
PART: :
PART: [2
PART: , 4
PART: ]
PART: }
PART: ]
encode方法等价于''.join(encoder.iterencode(),而且预先会做些错误检查(比如非字符串作为dict的key),对于自定义的对象,我们只需从些JSONEncoder的default()方法,其实现方式与上面提及的函数convet_to_builtin_type()是类似的。
import json
import json_myobj
class MyObj(object):
    def __init__(self,s):
        self.s = s
    def __repr__(self):
        return "<MyObj(%s)>" % self.s
class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        print 'default(', repr(obj), ')'
        # Convert objects to a dictionary of their representation
        d = { '__class__':obj.__class__.__name__,
              '__module__':obj.__module__,
              }
        d.update(obj.__dict__)
        return d
obj = json_myobj.MyObj('helloworld')
print obj
print MyEncoder().encode(obj)
输出:
<MyObj(internal data)>
default( <MyObj(internal data)> )
{"s": "helloworld", "__module__": "Myobj", "__class__": "MyObj"}
从json对Python对象的转换:
class MyDecoder(json.JSONDecoder):
    def __init__(self):
        json.JSONDecoder.__init__(self, object_hook=self.dict_to_object)
    def dict_to_object(self, d):
        if '__class__' in d:
            class_name = d.pop('__class__')
            module_name = d.pop('__module__')
            module = __import__(module_name)
            print 'MODULE:', module
            class_ = getattr(module, class_name)
            print 'CLASS:', class_
            args = dict( (key.encode('ascii'), value) for key, value in d.items())
            print 'INSTANCE ARGS:', args
            inst = class_(**args)
        else:
            inst = d
        return inst
encoded_object = '[{"s": "helloworld", "__module__": "jsontest", "__class__": "MyObj"}]'
myobj_instance = MyDecoder().decode(encoded_object)
print myobj_instance
输出:
MODULE: <module 'jsontest' from 'E:\Users\liuzhijun\workspace\python\jsontest.py'>
CLASS: <class 'jsontest.MyObj'>
INSTANCE ARGS: {'s': u'helloworld'}
[<MyObj(helloworld)>]
json格式字符串写入到文件流中
上面的例子都是在内存中操作的,如果对于大数据,把他编码到一个类文件(file-like)中更合适,load()和dump()方法就可以实现这样的功能。
import json
import tempfile
data = [ { 'a':'A', 'b':(2, 4), 'c':3.0 } ]
f = tempfile.NamedTemporaryFile(mode='w+')
json.dump(data, f)
f.flush()
print open(f.name, 'r').read()
输出:
[{"a": "A", "c": 3.0, "b": [2, 4]}]
类似的:
import json
import tempfile
f = tempfile.NamedTemporaryFile(mode='w+')
f.write('[{"a": "A", "c": 3.0, "b": [2, 4]}]')
f.flush()
f.seek(0)
print json.load(f)
输出:
[{u'a': u'A', u'c': 3.0, u'b': [2, 4]}]
参考: http://docs.python.org/2/library/json.html http://www.cnblogs.com/coser/archive/2011/12/14/2287739.html http://pymotw.com/2/json/
paper 161:python的Json数据解析的更多相关文章
- 利用python将excel数据解析成json格式
		
利用python将excel数据解析成json格式 转成json方便项目中用post请求推送数据自定义数据,也方便测试: import xlrdimport jsonimport requests d ...
 - 浅谈JSON数据解析方法
		
JSON数据解析 JSON是什么?? 如何把JSON数据解析出来 如何把一个字典转换为JSON JSON详细介绍 JSON(JavaScript Object Notation) 是一种轻量级的数据交 ...
 - iOS - JSON 数据解析
		
iOS - JSON 数据解析 前言 NS_CLASS_AVAILABLE(10_7, 5_0) @interface NSJSONSerialization : NSObject @availab ...
 - python 发送json数据操作实例分析 - python
		
文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 本文实例讲述了python 发送json数据操作.分享给大家供大家参考,具体如下: # !/usr/bin/env py ...
 - Python操作JSON数据代码示例
		
#!/usr/bin/env python import json import os def json_test(): return_dic = {} json_data = { 'appid':' ...
 - [开源 .NET 跨平台 数据采集 爬虫框架: DotnetSpider] [四] JSON数据解析
		
[DotnetSpider 系列目录] 一.初衷与架构设计 二.基本使用 三.配置式爬虫 四.JSON数据解析与配置系统 场景模拟 假设由于漏存JD SKU对应的店铺信息.这时我们需要重新完全采集所有 ...
 - JSON数据解析 基础知识及链接收集
		
JSON数据解析学习 JSON介绍 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式. JSON 是存储和交换文本信息的语法.类似 XML.但是JSON 比 ...
 - JSON数据解析(转)
		
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,为Web应用开发提供了一种理想的数据交换格式. 本文将主要介绍在Android ...
 - JSON数据解析(GSON方式) (转)
		
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,为Web应用开发提供了一种理想的数据交换格式. 在上一篇博文<Andro ...
 
随机推荐
- PHP-图片处理
			
开启 GD 扩展(php_gd2.dll) 创建画布 画布:一种资源型数据,可以操作的图像资源. 创建新画布(新建) ImageCreate(宽,高); 创建基于调色板的画布. imageCreate ...
 - springboot参数校验
			
为了能够进行嵌套验证,必须手动在Item实体的props字段上明确指出这个字段里面的实体也要进行验证.由于@Validated不能用在成员属性(字段)上,但是@Valid能加在成员属性(字段)上,而且 ...
 - 深入学习Keras中Sequential模型及方法
			
https://www.cnblogs.com/wj-1314/p/9579490.html
 - JSP中四种属性保存范围(1)
			
一.四种属性范围 在JSP中提供了四种属性保存范围 page:在一个页面内保存属性,跳转之后无效request:在一次服务请求范围内,服务器跳转后依然有效session:-在一次会话范围内,无论何种跳 ...
 - Oracle基本操作练习(一)
			
--创建表空间 create tablespace test datafile 'c:\test.dbf' size 100m autoextend on next 10m; --删除表空间 drop ...
 - jmeter 非GUI执行测试,没有响应数据保存到jtl文件办法
			
估计是jmeter为了减轻客户机负担,就没又默认把这些信息保存,如果想要保存,也可以,需要做出如下配置: 修改bin目录下的user.properties文件,追加配置: jmeter.save.sa ...
 - 线上服务器CPU100%排查
			
某服务器上部署了若干tomcat实例,即若干垂直切分的Java站点服务,以及若干Java微服务,突然收到运维的CPU异常告警. 问:如何定位是哪个服务进程导致CPU过载,哪个线程导致CPU过载,哪段代 ...
 - 耗时近一个月,终于录完了VUE.JS2.0前端视频教程!
			
这次课录制的比较辛苦,圣诞节时原本已经快录制完成了,偶然的一次,播放了一下,感觉不满意,好几篇推倒重来,所以今天才结束. vue.js2.0是Vue.JS的最新版本,视频教程还不多,如果你看到了,学到 ...
 - P3806 【模板】点分治1(题解)(点分治)
			
P3806 [模板]点分治1(题解)(点分治) 洛谷题目传送门 #include<iostream> #include<cstdlib> #include<cstdio& ...
 - PEP8规范总结
			
PEP8规范总结 代码编排 1 缩进.4个空格的缩进(编辑器都可以完成此功能),不使用Tap,更不能混合使用Tap和空格. 2 每行最大长度79,换行可以使用反斜杠,最好使用圆括号.换行点要在操作符的 ...