[CF1149E]Election Promises
可以猜想这题和sg函数有关。(反正也没有什么其它可用的算法)
因为是个DAG,所以可以先求出每个点的sg值。考虑怎样求答案。
根据sg函数证明的思路,我们可以考虑构造一个权值,使得以下三个条件满足:
1.无法操作时权值为\(0\)。
2.当权值非\(0\)时,一定存在一种方案使权值变为\(0\)。
3.当权值为\(0\)时,无论怎样操作权值都会变为非\(0\)。
观察到这题的性质,一次操作中,假设我们操作了点\(u\),那么所有sg值等于\(sg(u)\)的点中只有\(u\)的\(h\)发生变化。所以可以对于每一种sg值单独考虑,构造\(sum(x)\)为\(\bigoplus _{i=1}^n[sg(i)=x]h_i\),权值即定义为是否存在一个\(sum\)非\(0\),那么条件3就很容易满足了:当\(sum\)都为\(0\)时,无论怎样操作都会使得存在一个\(sum\)非\(0\)。
不难发现这样构造的话第一个条件也满足。第二个条件的话,考虑找到最大的满足\(sum(x)\ne 0\)的\(x\),并找到满足\(sg(u)=x\)的点中\(h\)最大的点\(u\)。根据sg函数的定义,\(u\)的出边中包含\(sg\in[0,x-1]\)的点,不难发现操作点\(u\)即可使得所有\(sum\)都变为\(0\)。
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
vector<int> E[N];
int n, m, h[N], deg[N], vis[N], sg[N], sum[N], sq[N], tt = 0;
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> h[i];
for(int i = 1, u, v; i <= m; i++) cin >> u >> v, ++deg[v], E[u].push_back(v);
queue<int> q;
for(int i = 1; i <= n; i++) if(!deg[i]) q.push(i);
while(!q.empty()) {
int u = q.front();
q.pop();
sq[++tt] = u;
for(auto v : E[u]) if(!--deg[v]) q.push(v);
}
for(int i = tt, u; i; i--) {
u = sq[i];
for(auto v : E[u]) vis[sg[v]] = u;
for(int j = 0;; j++) if(vis[j]^u) {
sum[sg[u] = j] ^= h[u];
break;
}
}
for(int i = n - 1; ~i; i--)
if(sum[i]) {
puts("WIN");
for(int u = 1; u <= n; u++)
if(sg[u] == i && (h[u]^sum[i]) < h[u]) {
h[u] ^= sum[i];
for(auto v : E[u]) h[v] ^= sum[sg[v]], sum[sg[v]] = 0;
for(int v = 1; v <= n; v++) cout << h[v] << ' ';
return 0;
}
}
puts("LOSE");
return 0;
}
[CF1149E]Election Promises的更多相关文章
- Codeforces Round #556 题解
Codeforces Round #556 题解 Div.2 A Stock Arbitraging 傻逼题 Div.2 B Tiling Challenge 傻逼题 Div.1 A Prefix S ...
- Codeforces Round #556 (Div. 1)
Codeforces Round #556 (Div. 1) A. Prefix Sum Primes 给你一堆1,2,你可以任意排序,要求你输出的数列的前缀和中质数个数最大. 发现只有\(2\)是偶 ...
- [译]ZOOKEEPER RECIPES-Leader Election
选主 使用ZooKeeper选主的一个简单方法是,在创建znode时使用Sequence和Ephemeral标志.主要思想是,使用一个znode,比如"/election",每个客 ...
- Christmas Trees, Promises和Event Emitters
今天有同事问我下面这段代码是什么意思: var MyClass = function() { events.EventEmitter.call(this); // 这行是什么意思? }; util.i ...
- JavaScript中Promises/A+规范的实现
Promises是一种异步编程模型,通过一组API来规范化异步操作,这样也能够让异步操作的流程控制更加容易. 下面的代码是假设执行一个异步队列,每一项都会使用上一项返回的数据: function ne ...
- CommonJS Promises/A规范
本文来自四火哥的翻译 CommonJS是一组javascript编程规范,而promise是其中之一. 简而言之,promises是一种令代码的异步行为变得更加优雅的软件抽象.在基本的定义中,代码可能 ...
- hihoCoder 1426 : What a Ridiculous Election(总统夶选)
hihoCoder #1426 : What a Ridiculous Election(总统夶选) 时间限制:1000ms 单点时限:1000ms 内存限制:256MB Description - ...
- We have a problem with promises
原文地址:http://fex.baidu.com/blog/2015/07/we-have-a-problem-with-promises/ 用Javascript的小伙伴们,是时候承认了,关于 p ...
- Jasmine测试ng Promises - Provide and Spy
jasmine提供了很多些很实用的处理Promises的方法,首先我们来考虑下面的这个例子: angular.module("myApp.store").controller(&q ...
随机推荐
- leetcode 141. 环形链表(C++)
给定一个链表,判断链表中是否有环. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 -1,则在该链表中没有环. 示例 1: 输入: ...
- DEDE网站地图优化技巧
DEDE网站地图优化技巧-把网站地图生成在系统根目录,利于搜索引擎收录相信恨多用DEDECMS做站的朋友,为避免将data目录内的东西随便外泄,在robots中将data目录屏蔽了,但是DEDE默认的 ...
- Vue Cli 3:创建项目
一 简介 Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统,有几个独立的部分. 1 CLI (@vue/cli) 是一个全局安装的 npm 包,提供了终端里的 vue 命令.(vue ...
- 身份证验证的js
function isIdCardNo(num) { num = num.toUpperCase(); //身份证号码为15位或者18位,15位时全为数字,18位前17位为数字,最后一位是校验位,可能 ...
- dp或dfs(01背包问题)
链接:https://ac.nowcoder.com/acm/contest/993/C来源:牛客网题意:n头牛,给出它们的H高度,问这些牛的高度叠加起来大于等于书架高度,问叠加后的高度与书架的差值最 ...
- 攻防世界--Shuffle
测试文件:https://adworld.xctf.org.cn/media/task/attachments/a03353e605bc436798a7cabfb11be073 1.准备 获得信息 3 ...
- 初涉kafka
前言: 今天终于搭建成功kafka环境,并创建了第一个topic,并生产.消费消息,如下图: 生产: 消费: 心情真的是好激动,大家都说搭建环境其实特别简单,但是我的学习却一直卡在搭建环境上面,不是虚 ...
- ubuntu下安装c man文档
http://www.mirrorservice.org/sites/sourceware.org/pub/gcc/libstdc%2b%2b/doxygen/ 下载 http://www.mirro ...
- php中的花括号使用详解
1.简单句法规则(用花括号界定变量名,适用于PHP所有版本,是php系统设定): $a = 'flower'; echo "She received some $as" ...
- A Tutorial on Using the ALSA Audio API
A Tutorial on Using the ALSA Audio API This document attempts to provide an introduction to the ALSA ...