BZOJ4386 [POI2015]Wycieczki 矩阵+倍增
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=4386
题解
一眼就可以看出来是邻接矩阵快速幂。
可是这里的边权不为 \(1\)。不过可以发现,边权最多为 \(3\)。但是边的数量很多,不适合拆边,那就拆点吧。对于一条 \(x \to y\) 的边,就建立一个 \(x_0\to y_{w - 1}\) 的边,\(w\) 为边权。
然后就建立矩阵就可以了。因为我们需要统计第 \(i\) 步之前一共有多少路径,所以可以新建一个节点,每个点向这个点连一条有向边,这个点自己再来一个自环。
然后预处理 \(B_i\) 为走了 \(2^i\) 步的矩阵,直接倍增出来答案就可以了。
下面是代码,矩阵乘法的复杂度为 \(O(n^3)\),一共倍增 \(O(\log k)\) 次,因此总的时间复杂度为 \(O(n^3\log k)\)。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 40 * 3 + 7;
int n, m;
ll k;
struct Matrix {
ll a[N][N];
inline Matrix() { memset(a, 0, sizeof(a)); }
inline Matrix operator * (const Matrix &b) {
Matrix c;
for (int k = 0; k <= n; ++k)
for (int i = 0; i <= n; ++i)
for (int j = 0; j <= n; ++j)
c.a[i][j] += a[i][k] * b.a[k][j];
return c;
}
inline void print() const {
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= n; ++j) dbg("%lld ", a[i][j]);
dbg("\n");
}
}
} A, B[N];
inline bool isfull(const Matrix &a) {
ll cnt = 0;
for (int i = 1; i <= n / 3; ++i) {
cnt += a.a[i][0] - 1;
if (cnt >= k) return 1;
}
return 0;
}
inline void work() {
n = n * 3, B[0] = A;
int lim = 0;
for (int i = 1; i <= 70; ++i) {
B[i] = B[i - 1] * B[i - 1];
++lim;
if (isfull(B[i])) break;
}
if (!isfull(B[lim--])) {
puts("-1");
return;
}
memset(A.a, 0, sizeof(A.a));
for (int i = 0; i <= n; ++i) A.a[i][i] = 1;
ll ans = 0;
for (int i = lim; ~i; --i) {
const Matrix &tmp = A * B[i];
if (!isfull(tmp)) A = tmp, ans += 1ll << i;
}
printf("%lld\n", ans);
}
inline void init() {
read(n), read(m), read(k);
for (int i = 1; i <= m; ++i) {
int x, y, z;
read(x), read(y), read(z);
if (z == 1) ++A.a[x][y];
if (z == 2) ++A.a[x][y + n];
if (z == 3) ++A.a[x][y + n * 2];
}
for (int i = 1; i <= n; ++i) A.a[i][0] = A.a[i + n][i] = A.a[i + n * 2][i + n] = 1;
A.a[0][0] = 1;
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
BZOJ4386 [POI2015]Wycieczki 矩阵+倍增的更多相关文章
- BZOJ4386[POI2015]Wycieczki——矩阵乘法+倍增
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- 【bzoj4386】[POI2015]Wycieczki 矩阵乘法
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入 第 ...
- BZOJ4386 : [POI2015]Wycieczki
将每个点拆成三个点,并将转移转化为矩阵乘法,然后倍增即可求出第$k$短路的长度,注意对爆long long情况的处理. 时间复杂度$O(n^3\log k)$. #include<cstdio& ...
- BZOJ4386[POI2015]Wycieczki / Luogu3597[POI2015]WYC - 矩乘
Solution 想到边权为$1$的情况直接矩乘就可以得出长度$<=t$ 的路径条数, 然后二分check一下即可 但是拓展到边权为$2$,$3$ 时, 需要新建节点 $i+n$ 和 $i+2n ...
- BZOJ 4386 Luogu P3597 [POI2015]Wycieczki (矩阵乘法)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4386 (luogu) https://www.luogu.org/pro ...
- 【BZOJ-4386】Wycieczki DP + 矩阵乘法
4386: [POI2015]Wycieczki Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 197 Solved: 49[Submit][Sta ...
- bzoj 4386: [POI2015]Wycieczki
bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...
- UVa 11149 矩阵的幂(矩阵倍增法模板题)
https://vjudge.net/problem/UVA-11149 题意: 输入一个n×n矩阵A,计算A+A^2+A^3+...A^k的值. 思路: 矩阵倍增法. 处理方法如下,一直化简下去直到 ...
- [POI2015]Wycieczki
题目描述 给定一张n个点m条边的带权有向图,每条边的边权只可能是1,2,3中的一种.将所有可能的路径按路径长度排序,请输出第k小的路径的长度,注意路径不一定是简单路径,即可以重复走同一个点. 输入输出 ...
随机推荐
- php array_combine()函数 语法
php array_combine()函数 语法 作用:通过合并两个数组来创建一个新数组,其中的一个数组是键名,另一个数组的值为键值.dd马达价格 语法:array_combine(keys,valu ...
- CentOS 7.5 通过kubeadm部署k8s-1.15.0
kubeadm是Kubernetes官方提供的用于快速安装Kubernetes集群的工具,伴随Kubernetes每个版本的发布都会同步更新,kubeadm会对集群配置方面的一些实践做调整,通过实验k ...
- BUUCTF |[0CTF 2016]piapiapia
步骤: nickname[]=wherewherewherewherewherewherewherewherewherewherewherewherewherewherewherewherewhere ...
- InputStream类的available()方法
InputStream类的available()方法 这个方法可以在读写操作前先得知数据流里有多少个字节可以读取需要注意的是,如果这个方法用在从本地文件读取数据时,一般不会遇到问题,但如果是用于网络操 ...
- json和list转换
1.json转list List<TenantMember> tm= (List<TenantMember>)JSONArray.toCollection(JSONArray. ...
- Maven安装本地jar包至本地repository
1.安装jar包 Maven 安装 JAR 包的命令是: mvn install:install-file -Dfile=jar包的位置 -DgroupId=上面的groupId -Dartifa ...
- HTML与CSS中的文本个人分享
文本 标题元素 注意: 在一个HTML页面中最好只使用一个<h1>标题 因为浏览器只会抓取一个多了没用 示例代码: <body> <!-- 标题元素 - <h1&g ...
- HDU 6121 Build a tree(k叉树的子树大小相异)
http://acm.hdu.edu.cn/showproblem.php?pid=6121 题目大意: 给你一颗 n 个节点的完全 k 叉树,问你这棵树中所有子树结点个数的总异或值. 分析: 我们很 ...
- 牛客提高D1t2 最小生成链
分析 我们发现可以把题目转化为:有一个序列a,问它的排列中相邻两个值异或的最大值的最小值 我们发现序列的构成一定是前几位全是一样的 从某一位开始左面全是0右面全是1 所以只要找到一种方案是的交界两个值 ...
- 【SpringBoot】 项目中运用的一些技巧,mybatis-plus 自动编译等(持续更新)
前言 本文将总结项目中用到的一些springboot 的技巧,持续更新. Mybatis-Plus 的运用 使用原因: 主要是节省了Mapper层的编写,通过继承BaseMapper可以直接调用通用的 ...