Unity游戏中使用贝塞尔曲线
孙广东 2015.8.15
比方在3D rpg游戏中。我们想设置弹道,不同的轨迹类型!
目的:这篇文章的主要目的是要给你关于在游戏怎样使用贝塞尔曲线的基本想法。
贝塞尔曲线是最主要的曲线,一般用在计算机 图形学和 图像处理。
贝塞尔曲线能够用来创建平滑的曲线的道路、 弯曲的路径就像 祖玛游戏、 弯曲型的河流等。
一条贝塞尔曲线是由一组定义的控制点 P0到 Pn,在 n 调用它的顺序 (n = 1 为线性。2 为二次,等.)。第一个和最后一个控制点总是具有终结点的曲线;然而,中间两个控制点 (假设有的话) 一般不会位于曲线上 。
贝塞尔曲线包括两个控制点即 n = 2 称为线性的贝塞尔曲线
贝塞尔曲线包括三个控制点即 n = 3 称为二次贝塞尔曲线
贝塞尔曲线包括四个控制点即 n = 4,所以称为三次贝塞尔曲线。
贝塞尔曲线返回点的贝塞尔函数。使用线性插值的概念作为基础。所以,让我们了解什么首先是线性插值。
两个点之间的线性插值的点获取那两个点之间,0 <= t <= 1,像 Mathf.Lerp 。
插值点。与 P 公式P0和 P1能够写成,
P = P0+ t (P1 - P0)。0 <= t <= 1
在这里,为得到插值的点我们加入 tth指向 P 的分数与这两个之间的距离0.所以。
For T = 0,P = P0.
For T = 1。P = P1.
For T = 0.5,P = P0和 P1间的点.
线性的贝塞尔曲线:
线性的贝塞尔曲线有两个控制点。为给出了两个点 P0和 P1一个线性的贝塞尔曲线是仅仅是这两个点之间的直线。曲线是相当于线性插值给出,
B(t) = P0+ t (P1 - P0) = (1-t) P0 + tP1 ,0 <= t <= 1
线性贝塞尔曲线怎样计算出来的是例如以下所看到的:
二次贝塞尔曲线:
二次贝塞尔曲线具有三个控制点。
二次贝塞尔曲线是点对点的两个线性贝塞尔曲线的线性插值。
为给出了三个点 P0、P1和 P2一条二次贝塞尔曲线,事实上是两条线性的贝塞尔曲线。线性贝塞尔曲线的 P0和 P1和 线性贝塞尔曲线P1和 P2. 所以,给出二次贝塞尔曲线 :
B(t) = (1-t) BP0P1(t) + t BP1P2(t)。0 <= t <= 1
B(t) = (1-t) [(1-t) P0 + tP1] + t [(1-t) P1+ tP2],0 <= t <= 1
通过又一次排列上述方程,
B(t) = (1-t)2P0+ 2 (1-t) tP1 + t2P2, 0 <= t <= 1
二次贝塞尔曲线动画计算例如以下所看到的:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" />
三次贝塞尔曲线:
三次方贝塞尔曲线具有四个控制点。
二次贝塞尔曲线是 点对点的两条二次贝塞尔曲线的线性插值。对于给出的四个点 P0、P1、P2和 P3三次方贝塞尔曲线。是二次贝塞尔曲线P0、P1和 P2和 二次贝塞尔曲线P1、P2和 P3 得到的 线性插值 .所以,给出三次方贝塞尔曲线
B(t) = (1-t) BP0,P1,P2(t) + t BP1,P2,P3(t),0 <= t <= 1
B(t) = (1-t) [(1-t)2P0+ 2 (1-t) tP1 + t2P2] + t [(1-t)2P1+ 2 (1-t) tP2 + t2P3]。0 <= t <= 1
通过又一次排列上述方程中,
B(t) = (1-t)3P0 + 3(1-t)2tP1+ 3 (1-t) t2P2 + t3P3 0 <= t <= 1
三次贝塞尔曲线计算例如以下所看到的:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" />
所以。一般能够作为点对点的线性插值获得从两个对应的贝赛尔曲线的程度 n-1 的两个点定义程度 n 的贝塞尔曲线(就是高级的是两个低一级的线性插值)。
在大多数应用程序使用两种二次或三次方贝塞尔函数。
然而,你总能够使用更高程度贝塞尔函数绘制更复杂的曲线,但较高程度贝塞尔函数的计算是比較复杂和添加处理开销。
所以。而不是使用更高的学位贝塞尔函数绘制更复杂的曲线,你能够多次使用两种二次或三次方贝塞尔函数。在这里。我创建了一个演示和绘制的∞形曲线,使用三次方贝塞尔函数中循环。例如以下所看到的。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" />
若要创建一条曲线。如上所看到的。请创建场景,例如以下所看到的:
如今,将Bezier.cs脚本附加到 Bezier Manager
Bezier.cs:
using UnityEngine;
using System.Collections.Generic;
[RequireComponent(typeof(LineRenderer))]
public class Bezier : MonoBehaviour
{
public Transform[] controlPoints;
public LineRenderer lineRenderer; private int curveCount = 0;
private int layerOrder = 0;
private int SEGMENT_COUNT = 50; void Start()
{
if (!lineRenderer)
{
lineRenderer = GetComponent<LineRenderer>();
}
lineRenderer.sortingLayerID = layerOrder;
curveCount = (int)controlPoints.Length / 3;
} void Update()
{ DrawCurve(); } void DrawCurve()
{
for (int j = 0; j <curveCount; j++)
{
for (int i = 1; i <= SEGMENT_COUNT; i++)
{
float t = i / (float)SEGMENT_COUNT;
int nodeIndex = j * 3;
Vector3 pixel = CalculateCubicBezierPoint(t, controlPoints [nodeIndex].position, controlPoints [nodeIndex + 1].position, controlPoints [nodeIndex + 2].position, controlPoints [nodeIndex + 3].position);
lineRenderer.SetVertexCount(((j * SEGMENT_COUNT) + i));
lineRenderer.SetPosition((j * SEGMENT_COUNT) + (i - 1), pixel);
} }
} Vector3 CalculateCubicBezierPoint(float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3)
{
float u = 1 - t;
float tt = t * t;
float uu = u * u;
float uuu = uu * u;
float ttt = tt * t; Vector3 p = uuu * p0;
p += 3 * uu * t * p1;
p += 3 * u * tt * p2;
p += ttt * p3; return p;
}
}
在这里。CalculateCubicBezierPoint 函数是 Cubiz 贝塞尔函数,我已解释了上面运行。DrawCurve 函数绘制两条 三次方贝塞尔曲线。
Between P0, P0- control Point1, P1- control Point1 and P1.
Between P1, P1- control Point1, P0- control Point2 and P0.
不论什么控制点 可处理其对应的曲线的曲率。你能够在不论什么时间改变曲线,通过拖动随意控制点,例如以下所看到的:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" />
Unity游戏中使用贝塞尔曲线的更多相关文章
- 【Unity3d游戏开发】游戏中的贝塞尔曲线以及其在Unity中的实现
RT,马三最近在参与一款足球游戏的开发,其中涉及到足球的各种运动轨迹和路径,比如射门的轨迹,高吊球,香蕉球的轨迹.最早的版本中马三是使用物理引擎加力的方式实现的足球各种运动,后来的版本中使用了根据物理 ...
- Unity3d游戏中自定义贝塞尔曲线编辑器[转]
关于贝塞尔曲线曲线我们再前面的文章提到过<Unity 教程之-在Unity3d中使用贝塞尔曲线>,那么本篇文章我们来深入学习下,并自定义实现贝塞尔曲线编辑器,贝塞尔曲线是最基本的曲线,一般 ...
- NGUI研究院之在Unity中使用贝塞尔曲线(六)[转]
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天因为工作的原因需要将贝塞尔曲线加在工程中,那么MOMO迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的任意角度的曲线,这两个点一个是 ...
- 在Unity中使用贝塞尔曲线(转)
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天因为工作的原因需要将贝塞尔曲线加在工程中,那么MOMO迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的任意角度的曲线,这两个点一个是 ...
- NGUI研究之在Unity中使用贝塞尔曲线
鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天由于工作的原因须要将贝塞尔曲线加在project中.那么我迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的随意角度的曲线,这两个点一 ...
- svg path中的贝塞尔曲线
首先介绍以下什么是贝塞尔曲线 贝塞尔曲线又叫贝茨曲线(Bezier),由两个端点以及若干个控制点组成,只有两个端点在曲线上,控制点不在曲线上,只是控制曲线的走向. 控制点个数为0时,它是一条直线; 控 ...
- Canvas中绘制贝塞尔曲线
① 什么是贝塞尔曲线? 在数学的数值分析领域中,贝济埃曲线(英语:Bézier curve,亦作“贝塞尔”)是计算机图形学中相当重要的参数曲线.更高维度的广泛化贝济埃曲线就称作贝济埃曲面,其中贝济埃三 ...
- Unity优化方向——优化Unity游戏中的垃圾回收(译)
介绍 当我们的游戏运行时,它使用内存来存储数据.当不再需要该数据时,存储该数据的内存将被释放,以便可以重用.垃圾是用来存储数据但不再使用的内存的术语.垃圾回收是该内存再次可用以进行重用的进程的名称. ...
- Unity优化方向——优化Unity游戏中的图形渲染(译)
CPU bound:CPU性能边界,是指CPU计算时一直处于占用率很高的情况. GPU bound:GPU性能边界,同样的是指GPU计算时一直处于占用率很高的情况. 原文:https://unity3 ...
随机推荐
- ⑤bootstrap表格使用基础案例
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- HTML学习笔记 w3sCss盒子模型应用案例(div布局) 第十一节 (原创) 参考使用表
* { margin: 0px; padding: 0px; } .top { width: 100%; height: 50px; background-color: antiquewhite; } ...
- sql select case when 语句
有道笔试题: 服务器监控表server_status中,当服务器状态发生server_status变化时数据表中将被插入一条记录,状态0表示停机 1表示正常,用SQL查询Server A 的停机开始 ...
- 大话git中的撤销操作
下面以现实场景作为情境. 基础知识,理解git中的几个区域 本地代码已经add,未commit 修改本地工作目录中的readme.md,添加文字"第一次修改" 然后查看下状态 ➜ ...
- 15.javaweb XML详解教程
一.XML语言简介 1, 作用:用于描述和保存现实中具有某种关系的数据,还可以作为软件配置文件,和描述程序模块之间的关系 2, 语法: 首先 先看一个XML文件的组成部分 关于文档声明 Versi ...
- JAVA调用matlab代码
做实验一直用的matlab代码,需要嵌入到java项目中,matlab代码拼拼凑凑不是很了解,投机取巧采用java调用matlab的方式解决. 1. matlab版本:matlabR2014a ...
- c#读取并分析sql Server2005数据库日志
用过logExplorer的朋友都会被他强悍的功能吸引,我写过一篇详细的操作文档可以参考http://blog.csdn.net/jinjazz/archive/2008/05/19/2459692. ...
- java环境变量和tomcat环境变量配置
一.JAVA环境变量的配置1.首先下载JDK JDK可以在Oracle(甲骨文)公司的官方网站http://www.oracle.com下载2.安装完成后查看JDK安装路径一般是C:\Program ...
- Oracle函数sys_connect_by_path 详解
Oracle函数sys_connect_by_path 详解 语法:Oracle函数:sys_connect_by_path 主要用于树查询(层次查询) 以及 多列转行.其语法一般为: s ...
- Kaggle实战之二分类问题
0. 前言 1. MNIST 数据集 2. 二分类器 3. 效果评测 4. 多分类器与误差分析 5. Kaggle 实战 0. 前言 "尽管新技术新算法层出不穷,但是掌握好基础算法就能解决手 ...