poj 1797 Heavy Transportation

Description

Background

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.

Problem

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo’s place) to crossing n (the customer’s place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1

3 3

1 2 3

1 3 4

2 3 5

Sample Output

Scenario #1:

4

题目大意:给出一张图,求从1到n的路径上权值的最大的最小值。

解题思路:最大生成树。用Prim算法,改动一些地方即可了。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std; typedef long long ll;
const int N = 1005;
const int INF = 0x3f3f3f3f;
int n, m;
int D[N][N], dis[N], vis[N], ans; void init() {
ans = INF;
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
D[i][j] = 0;
}
}
for (int i = 0; i <= n; i++) dis[i] = 0;
for (int i = 0; i <= n; i++) vis[i] = 0;
} void input() {
scanf("%d%d", &n, &m);
int a, b, len;
for (int i = 0; i < m; i++) {
scanf("%d %d %d", &a, &b, &len);
D[a][b] = D[b][a] = len;
}
} void Prim() {
int k;
for (int i = 1; i <= n; i++) {
dis[i] = D[1][i];
}
vis[1] = 1;
for (int i = 0; i < n - 1; i++) {
int L = -2;
for (int j = 1; j <= n; j++) {
if (!vis[j] && dis[j] > L) {
L = dis[j];
k = j;
}
}
if (ans > L) ans = L;
if (k == n) break;
vis[k] = 1;
for (int j = 1; j <= n; j++) {
if (!vis[j] && D[j][k] > dis[j]) {
dis[j] = D[j][k];
}
}
}
printf("%d\n\n", ans);
} int main() {
int T, Case = 1;
scanf("%d", &T);
while (T--) {
printf("Scenario #%d:\n", Case++);
init();
input();
Prim();
}
return 0;
}

poj 1797 Heavy Transportation(最大生成树)的更多相关文章

  1. POJ 1797 Heavy Transportation (最大生成树)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

  2. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  3. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  4. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  6. POJ 1797 Heavy Transportation(最大生成树/最短路变形)

    传送门 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 31882   Accept ...

  7. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  8. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  9. POJ 1797 Heavy Transportation (Dijkstra)

    题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...

随机推荐

  1. YSlow---基于firebug的插件 ,用于网站页面性能的分析

    YSlow有什么用? YSlow可以对网站的页面进行分析,并告诉你为了提高网站性能,如何基于某些规则而进行优化. YSlow可以分析任何网站,并为每一个规则产生一个整体报告,如果页面可以进行优化,则Y ...

  2. 关于Spring在多线程下的个人疑问

    在Web开发中,不可避免的是需要遇到并发操作的,并发操作就有可能会引发我们的多线程安全问题.比如说,我们多线程下访问同一个变量并且有一个线程做出修改那么就会使得我们另外的线程在不知情的情况下被修改自己 ...

  3. linux-mkdir

    mkdir mkdir : 可以用来创建目录,如果不加创建路径即在本路径下创建一个新的指定的目录,否则即在给出的路径下创建目录. 目录创建:目录名尽量见名知意,根据不同需要分层创建,尽量避免在同一目录 ...

  4. Java的DAO设计模式

    用java的DAO模式实现对一个学生实体的增加,查询操作. 1.建立一个学生实体类 Student.java public class Student { private String sid; pr ...

  5. Spring知识整理

    Spring简介 Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架,用来管理和维护bean,其中的特点是IOC(控制反转) DI(依赖注入) AOP(面向切面) 容易和其他框 ...

  6. idea 新建的xml文件显示为文本问题

    由于是新手 在用idea 中出现了 显示问题,一开始 都随它去 ,结果发现几次 都一样 由于 mybatis配置的config 我都命名为 mybatis-config.xml 网上搜索了下 没有搜到 ...

  7. Git(1)----Eclipse安装Git插件

    一.从官网选择系统版本下载Git并安装 地址:https://git-scm.com/downloads/ 二.打开Eclipse 1. 第一种安装方法: help-->Install New ...

  8. 处理ASP.NET Core中的HTML5客户端路由回退

    在使用由Angular,React,Vue等应用程序框架构建的客户端应用程序时,您总是会处理HTML5客户端路由,它将完全在浏览器中处理到页面和组件的客户端路由.几乎完全在浏览器中... HTML5客 ...

  9. System.Transactions 事务超时属性

    最近遇到一个处理较多数据的大事务,当进行至10分钟左右时,爆出事务超时异常,如果Machine.config中不设置最大超时时间,则默认超时时间为10分钟 MachineSettingsSection ...

  10. 深入浅出多线程——ReentrantLock (一)

    ReentrantLock是一个排它重入锁,与synchronized关键字语意类似,但比其功能更为强大.该类位于java.util.concurrent.locks包下,是Lock接口的实现类.基本 ...