ADALINE模型即自适应线性单元(Adaptive Linear Neuron),主要用于信号处理中的自适应滤波、预测和模式识别。其结构图如下

输入向量X=(x0,x1,x2,...,xn)T每个输入分量可以使数字量或模拟量;权向量W=(w0,w1,w2,...,wn)T该模型有两种输出

(1)当变换函数为线性函数时,输出模拟量,可以作为调节误差的手段,其功能是将期望输出与实际输出相比较,得到一个模拟量的误差信号,以此来调节权值,以保证任何时候始终保持期望输出与实际输出相等(y=d)

y=f(WTX)=WTX

(2)当变换函数为符号函数时,输出为双极性数字量,可以用来线性分类

y=f(WTX)=sgn(WTX)

ADALINE模型采用LMS即最小二乘法作为学习规则:

由LMS规则有 ΔW=η*(d-WTX)X

当输出为模拟量时,采用单位线性函数作变换函数,故y=WTX

所以,期望输出与实际输出的误差为ε=d-y

由此权向量调整公式可改为 ΔW=η*(d-y)X=η*ε*X,将输入向量X除以其模的平方有

ΔW=η*ε*X/||X||2

下面以两输入模拟输出的ADALINE型为例:

设输入向量X=(-1,1.2,2.7)T,d=2.3,初始权值为随机数W(0)=(-1,0.5,1.1)T,η=0.6,则,

y(0)=W(0)TX=(-1,0.5,1.1)T(-1,1.2,2.7)=4.57

ε(0)=d-y(0)=2.3-4.57=-2.27

第一次调整权值计算:

ΔW(0)=η*ε(0)*X/||X||2=0.6*(-2.27)*(-1,1.2,2.7)T/(-1,1.2,2.7)(-1,1.2,2.7)T=(0.14,-0.168,-0.378)T

W(1)=W(0)+ΔW(0)=(-1,0.5,1.1)T+(0.14,-0.168,-0.378)T=(-0.86,0.332,0.722)T

y(1)=W(1)TX=(-0.86,0.332,0.722)T(-1,1.2,2.7)=3.21

ε(1)=d-y(1)=2.3-3.21=-0.91

第二次调整权值计算:

ΔW(1)=η*ε(1)*X/||X||2=0.6*(-0.91)*(-1,1.2,2.7)T/(-1,1.2,2.7)(-1,1.2,2.7)T=(0.056,-0.0672,-0.151)T

W(2)=W(1)+ΔW(1)=(-0.86,0.332,0.722)T+(0.056,-0.0672,-0.151)T=(-0.804,0.265,0.571)T

重复上面的步骤直至实际输出逼近d即可。

ADALINE模型 主要用于语音识别、心电图诊断、信号处理以及系统辨识等方面

ADALINE模型的更多相关文章

  1. ASP.NET MVC with Entity Framework and CSS一书翻译系列文章之第二章:利用模型类创建视图、控制器和数据库

    在这一章中,我们将直接进入项目,并且为产品和分类添加一些基本的模型类.我们将在Entity Framework的代码优先模式下,利用这些模型类创建一个数据库.我们还将学习如何在代码中创建数据库上下文类 ...

  2. ASP.NET Core MVC/WebAPi 模型绑定探索

    前言 相信一直关注我的园友都知道,我写的博文都没有特别枯燥理论性的东西,主要是当每开启一门新的技术之旅时,刚开始就直接去看底层实现原理,第一会感觉索然无味,第二也不明白到底为何要这样做,所以只有当你用 ...

  3. ASP.NET路由模型解析

    大家好,我又来吹牛逼了 ~-_-~ 转载请注明出处:来自吹牛逼之<ASP.NET路由模型解析> 背景:很多人知道Asp.Net中路由怎么用的,却不知道路由模型内部的运行原理,今天我就给大家 ...

  4. 高性能IO模型浅析

    高性能IO模型浅析 服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种: (1)同步阻塞IO(Blocking IO):即传统的IO模型. (2)同步非阻塞IO(Non-blocking  ...

  5. 探索ASP.NET MVC5系列之~~~4.模型篇---包含模型常用特性和过度提交防御

    其实任何资料里面的任何知识点都无所谓,都是不重要的,重要的是学习方法,自行摸索的过程(不妥之处欢迎指正) 汇总:http://www.cnblogs.com/dunitian/p/4822808.ht ...

  6. 隐马尔科夫模型python实现简单拼音输入法

    在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此 ...

  7. webapi - 模型验证

    本次要和大家分享的是webapi的模型验证,讲解的内容可能不单单是做验证,但都是围绕模型来说明的:首先来吐槽下,今天下午老板为自己买了套新办公家具,看起来挺好说明老板有钱,不好的是我们干技术的又成了搬 ...

  8. 谈谈一些有趣的CSS题目(二)-- 从条纹边框的实现谈盒子模型

    开本系列,讨论一些有趣的 CSS 题目,抛开实用性而言,一些题目为了拓宽一下解决问题的思路,此外,涉及一些容易忽视的 CSS 细节. 解题不考虑兼容性,题目天马行空,想到什么说什么,如果解题中有你感觉 ...

  9. 【NLP】蓦然回首:谈谈学习模型的评估系列文章(一)

    统计角度窥视模型概念 作者:白宁超 2016年7月18日17:18:43 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量. ...

随机推荐

  1. python 三级联动

       china_map ={  "华南":{   "广东":["广州市","佛山市","深圳市", ...

  2. 配置文件http://www.cnblogs.com/Jevon-ran/p/7112007.html

    author:JevonWei 版权声明:原创作品 /etc/centos-release 记录系统版本信息 /etc/issue 系统登录前提示信息 /etc/motd 系统登陆后提示信息 /etc ...

  3. chrome开发工具指南(十)

    检查和删除 Cookie 从 Application 面板检查和删除 Cookie. TL;DR 查看与 Cookie 有关的详细信息,例如名称.值.网域和大小,等等. 删除单个 Cookie.选定网 ...

  4. ajax请求成功前loading

    1.jquery方式 <!DOCTYPE html><html lang="en"><head> <meta charset=" ...

  5. Javascript学习日志(三):闭包

    说实话,前面一节的原型和原型链在当初学的时候并没有很头疼,对着高级编程第三版撸了几遍就理解透了,闭包这一节真的挺头疼的,很惭愧,看了差不多十来遍吧,还翻看了网上的其他博客和解释文档,五花八门的表达方式 ...

  6. Error:Failed to load project configuration:xxxxxxxxxxxxxxxxxxxx cannot read file .idea/misc.xml

    你这idea不会没有配置默认jdk吧?你看看File--other settings--default project structure,看看project setting的project里面,有没 ...

  7. 个人作业3—个人总结(Alpha阶段)

    一.关于Alpha阶段的总结 1.我们团队的情况 关于我们拖拉机团队,大家在一起做项目的这几周算是比较团结.首先组长布置的任务,每个人都有认真去做,每次例会还会总结不足,提出改进,并且实施这些改进:其 ...

  8. 201521123040《Java程序设计》第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 2. 书面作业 本次PTA作业题集异常.多线程 1.finally 题目4-2 1.1 截图你的提交结果(出 ...

  9. 201521123049 《JAVA程序设计》 第12周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 书面作业 将Student对象(属性:int id, String name,int age,doubl ...

  10. PHP fwrite 函数:将字符串写入文件(追加与换行)(转)

    PHP fwrite() fwrite() 函数用于向文件写入字符串,成功返回写入的字符数,否则返回 FALSE . 语法: int fwrite( resource handle, string s ...