一、基本概念

角点corner:可以将角点看做两个边缘的交叉处,在两个方向上都有较大的变化。具体可由下图中分辨出来:

兴趣点interest point:兴趣点是图像中能够较鲁棒的检测出来的点,它不仅仅局限于角点. 也可以是灰度图像极大值或者极小值点等

二、Harris角点检测

Harris 算子是 Haris & Stephens 1988年在 "A Combined Corner and Edge Detector" 中提出的 提出的检测算法, 现在已经成为图像匹配中常用的算法.

对于一幅RGB图像我们很很容易得到corner 是各个方向梯度值较大的点, 定义 函数WSSD(Weighted Sum Squared Difference)为:

$$S(x,y) = \sum_{u} \sum_{v}w(u,v)(I((u+x,v+y)-I(u,v))^2 (1)$$

其中$w(u,v)$可以看作采样窗,可以选择矩形窗函数,也可以选择高斯窗函数:

$I(u+x,v+y)-I(u,v)$可以看作像素值变化量(梯度):

使用泰勒展开:$I(u+x,v+y) \approx I(u,v)+I_x(u,v)x+I_y(u,v)y (2)$

(1)代入(2) $S(x,y) \approx \sum_u \sum_v w(u,v) (I_x(u,v)x + I_y(u,v)y)^2$

写成$S(x,y) \approx (x,y) A (x,y)^T $

其中 A 为 二阶梯度矩阵(structure tensor/ second-moment matrix)

$$A = \sum_u \sum_v w(u,v) \begin{bmatrix} I_x^2& I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} $$

将A定义为Harris Matrix,A 的特征值有三种情况:

1. $\lambda_1 \approx 0, \lambda_2 \approx 0$,那么点$x$不是兴趣点

2. $\lambda_1 \approx 0, \lambda_2$为一个较大的正数, 那么点$x$为边缘点(edge)

3. $\lambda_1, \lambda_2$都为一个较大的正数, 那么点$x$为角点(corner)

由于特征值的计算是 computationally expensive,引入如下函数

$M_c = \lambda_1\lambda_2 - \kappa(\lambda_1+\lambda_2)^2 = det(A) - \kappa trace^2(A) $

为了去除加权常数$\kappa$ 直接计算

$M_{c}^{'}  =  \frac{det(A)}{trace(A)+\epsilon}$

三、角点匹配

Harris角点检测仅仅检测出兴趣点位置,然而往往我们进行角点检测的目的是为了进行图像间的兴趣点匹配,我们在每一个兴趣点加入descriptors描述子信息,给出比较描述子信息的方法. Harris角点的,描述子是由周围像素值块batch的灰度值,以及用于比较归一化的相关矩阵构成。

通常,两个大小相同的像素块I_1(x)和I_2(x) 的相关矩阵为:
$$c(I_1,I_2) = \sum_x f(I_1(x),I_2(x))$$

$f函数随着方法变化而变化,c(I_1,I_2)$值越大,像素块相似度越高.

对互相关矩阵进行归一化得到normalized cross correlation :

$$ncc(I_1,I_2) = \frac{1}{n-2} \sum_x \frac{(I_1(x)-\mu_1)}{\sigma_1} \cdot \frac{(I_2(x)-\mu_2)}{\sigma_2}$$

其中$\mu$为像素块的均值,\sigma为标准差. ncc对图像的亮度变化具有更好的稳健性.

四、python实现

python版本:2.7

依赖包: numpy,scipy,PIL, matplotlib

图片:

trees_002.jpg

trees003.jpg

from PIL import Image
from scipy.ndimage import filters
from numpy import *
from pylab import * def compute_harris_response(im,sigma=3):
"""Compute the Harris corner detector response function for each
pixel in a graylevel image.""" #derivative
imx = zeros(im.shape)
filters.gaussian_filter(im,(sigma,sigma),(0,1),imx) imy = zeros(im.shape)
filters.gaussian_filter(im,(sigma,sigma),(1,0),imy) #compute components of the Harris matrix Wxx = filters.gaussian_filter(imx*imx,sigma)
Wxy = filters.gaussian_filter(imx*imy,sigma)
Wyy = filters.gaussian_filter(imy*imy,sigma) #determinant and trace Wdet = Wxx*Wyy-Wxy**2
Wtr = Wxx+Wyy
return Wdet/Wtr def get_harris_points(harrisim,min_dist=10,threshold=0.1):
"""Return corners from a Harris response image min_dist is the
minimum number of pixels separating corners and image boundary.""" #find top corner candidates above a threshold
corner_threshold = harrisim.max()*threshold
harrisim_t = 1*(harrisim>corner_threshold) #get coordiantes of candidate
coords = array(harrisim_t.nonzero()).T #...and their valus
candicates_values = [harrisim[c[0],c[1]] for c in coords] #sort candicates
index = argsort(candicates_values) #sort allowed point loaction in array
allowed_location = zeros(harrisim.shape)
allowed_location[min_dist:-min_dist,min_dist:-min_dist] = 1 #select the best points taking min_distance into account
filtered_coords = []
for i in index:
if allowed_location[coords[i,0],coords[i,1]]==1:
filtered_coords.append(coords[i])
allowed_location[(coords[i,0]-min_dist):(coords[i,0]+min_dist),
(coords[i,1]-min_dist):(coords[i,1]+min_dist)]=0
return filtered_coords def plot_harris_points(image,filtered_coords):
"""plots corners found in image."""
figure
gray()
imshow(image)
plot([p[1] for p in filtered_coords],[p[0] for p in filtered_coords],'*')
axis('off')
show() def get_descriptors(image,filter_coords,wid=5):
"""For each point return pixel values around the point using a neihborhood
of 2*width+1."""
desc=[]
for coords in filter_coords:
patch = image[coords[0]-wid:coords[0]+wid+1,
coords[1]-wid:coords[1]+wid+1].flatten()
desc.append(patch) # use append to add new elements
return desc def match(desc1,desc2,threshold=0.5):
"""For each corner point descriptor in the first image, select its match
to second image using normalized cross correlation.""" n = len(desc1[0]) #num of harris descriptors
#pair-wise distance
d = -ones((len(desc1),len(desc2)))
for i in range(len(desc1)):
for j in range(len(desc2)):
d1 = (desc1[i]-mean(desc1[i]))/std(desc1[i])
d2 = (desc2[j]-mean(desc2[j]))/std(desc2[j])
ncc_value = sum(d1*d2)/(n-1)
if ncc_value>threshold:
d[i,j] = ncc_value ndx = argsort(-d)
matchscores = ndx[:,0] return matchscores def match_twosided(desc1,desc2,threshold=0.5):
"""two sided symmetric version of match()."""
matches_12 = match(desc1,desc2,threshold)
matches_21 = match(desc2,desc1,threshold) ndx_12 = where(matches_12>=0)[0]
print ndx_12.dtype
# remove matches that are not symmetric
for n in ndx_12:
if matches_21[matches_12[n]] !=n:
matches_12[n] = -1
return matches_12 def appendimages(im1,im2):
"""Return a new image that appends that two images side-by-side.""" #select the image with the fewest rows and fill in enough empty rows
rows1 = im1.shape[0]
rows2 = im2.shape[0] if rows1<rows2:
im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))),axis=0)
elif rows1<rows2:
im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))),axis=0)
return concatenate((im1,im2),axis=1)
def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True):
"""show a figure with lines joinging the accepted matches
Input:im1,im2(images as arrays),locs1,locs2,(feature locations),
metachscores(as output from 'match()'),
show_below(if images should be shown matches)."""
im3 = appendimages(im1,im2)
if show_below:
im3 = vstack((im3,im3)) imshow(im3) cols1 = im1.shape[1]
for i,m in enumerate(matchscores):
if m>0:
plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],'c')
axis('off') """
im = array(Image.open('F:/images/lena.bmp').convert('1'))
harrisim = compute_harris_response(im)
filtered_coords = get_harris_points(harrisim,6)
plot_harris_points(im,filtered_coords)
""" im1 = array(Image.open('trees_002.jpg').convert('L'))
im2 = array(Image.open('trees_003.jpg').convert('L')) wid = 5 harrisim = compute_harris_response(im1,5)
filtered_coords1 = get_harris_points(harrisim,wid+1)
d1 = get_descriptors(im1,filtered_coords1,wid) harrisim = compute_harris_response(im2,5)
filtered_coords2 = get_harris_points(harrisim,wid+1)
d2 = get_descriptors(im2,filtered_coords2,wid) print 'starting matching'
matches = match_twosided(d1,d2) figure()
gray()
plot_matches(im1,im2,filtered_coords1,filtered_coords2,matches)
show()

运行结果:

角点检测和匹配——Harris算子的更多相关文章

  1. 【Computer Vision】角点检测和匹配——Harris算子

    一.基本概念 角点corner:可以将角点看做两个边缘的交叉处,在两个方向上都有较大的变化.具体可由下图中分辨出来: 兴趣点interest point:兴趣点是图像中能够较鲁棒的检测出来的点,它不仅 ...

  2. 第十一节、Harris角点检测原理(附源码)

    OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比 ...

  3. opencv-角点检测之Harris角点检测

    转自:https://blog.csdn.net/poem_qianmo/article/details/29356187 先看看程序运行截图:   一.引言:关于兴趣点(interest point ...

  4. OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...

  5. OpenCV-Python:Harris角点检测与Shi-Tomasi角点检测

    一.Harris角点检测 原理: 角点特性:向任何方向移动变换都很大. Chris_Harris 和 Mike_Stephens 早在 1988 年的文章<A CombinedCorner an ...

  6. OpenCV教程(43) harris角的检测(1)

          计算机视觉中,我们经常要匹配两幅图像.匹配的的方式就是通过比较两幅图像中的公共特征,比如边,角,以及图像块(blob)等,来对两幅图像进行匹配.      相对于边,角更适合描述图像特征, ...

  7. Harris角点及Shi-Tomasi角点检测(转)

    一.角点定义 有定义角点的几段话: 1.角点检测(Corner Detection)是计算机视觉系统中用来获得图像特征的一种方法,广泛应用于运动检测.图像匹配.视频跟踪.三维建模和目标识别等领域中.也 ...

  8. 【OpenCV】角点检测:Harris角点及Shi-Tomasi角点检测

    角点 特征检测与匹配是Computer Vision 应用总重要的一部分,这需要寻找图像之间的特征建立对应关系.点,也就是图像中的特殊位置,是很常用的一类特征,点的局部特征也可以叫做“关键特征点”(k ...

  9. 角点检测:Harris角点及Shi-Tomasi角点检测

    角点 特征检测与匹配是Computer Vision 应用总重要的一部分,这需要寻找图像之间的特征建立对应关系.点,也就是图像中的特殊位置,是很常用的一类特征,点的局部特征也可以叫做“关键特征点”(k ...

随机推荐

  1. SimpleDateFormat使用和线程安全问题

    SimpleDateFormat 是一个以国别敏感的方式格式化和分析数据的具体类. 它允许格式化 (date -> text).语法分析 (text -> date)和标准化. Simpl ...

  2. esclipse连接mysql数据库

    怎样在eclipse开发环境中连接数据库并测试连接是否成功 1)eclipse开发环境里没有集成mysql的驱动,需要从以下地址下载连接驱动程序mysql-connector-java-XX-XX-X ...

  3. R绘图字体解决方案(转)

    COS论坛里面经常会遇到的一个问题就是绘图时中文字体怎么解决.最初,一个流行的方法是使用family = "GB1",但一般这样做出来的图比较难看,而且并没有完全解决问题.后来发现 ...

  4. VR全景:实体店与互联网的完美结合

    VR元年已过,VR项目.VR创业潮转为理性,VR行业分为两个方向:硬件和内容.硬件又分为VR头显和辅助设备,内容又分为VR全景和VR虚拟内容,如游戏.娱乐.根据行业划分为VR+购物,VR+教育,VR+ ...

  5. ssh框架整合之登录以及增删改查

    1.首先阐述一下我用得开发工具,myeclipse2017+oracle,所以我的基本配置步骤可能不一样,下面我用几张图来详解我的开发步骤. ---1先配置structs (Target 选择apac ...

  6. nodeJS实现简单网页爬虫功能

    前面的话 本文将使用nodeJS实现一个简单的网页爬虫功能 网页源码 使用http.get()方法获取网页源码,以hao123网站的头条页面为例 http://tuijian.hao123.com/h ...

  7. STM8程序在IAR中报错 unable to allocate space for sections

    Error[Lp011]: section placement failed: unable to allocate space for sections/blocks with a total es ...

  8. VR全景智慧城市常诚:信息技术点亮“智慧城市”

    亚太城市峰会暨市长论坛日前在澳大利亚昆士兰州首府布里斯班举行,"智慧城市"成为焦点议题.来自135个国家和地区的市长.副市长及代表们共同讨论如何利用高新科技解决城市发展中的问题,让 ...

  9. 每天一个JS 小demo之树菜单。主要知识点:DOM方法综合运用,递归运用

    <!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"& ...

  10. 你的MySQL服务器开启SSL了吗?

    最近,准备升级一组MySQL到5.7版本,在安装完MySQL5.7后,在其data目录下发现多了很多.pem类型的文件,然后通过查阅相关资料,才知这些文件是MySQL5.7使用SSL加密连接的.本篇主 ...