Tensors类似于numpy的ndarrays,但是可以在GPU上使用来加速计算。

一、Tensors的构建


from __future__ import print_function
import torch
构建未初始化的5x3矩阵:
x = torch.Tensor(5, 3)
print(x)

输出结果:

 -2.9226e-26  1.5549e-41  1.5885e+14
0.0000e+00 7.0065e-45 0.0000e+00
7.0065e-45 0.0000e+00 4.4842e-44
0.0000e+00 4.6243e-44 0.0000e+00
1.5810e+14 0.0000e+00 1.6196e+14
[torch.FloatTensor of size 5x3]

构造一个随机初始化的矩阵:

x = torch.rand(5, 3)
print(x)

输出结果:

 0.8168  0.4588  0.8139
0.7271 0.3067 0.2826
0.1570 0.2931 0.3173
0.8638 0.6364 0.6177
0.2296 0.1411 0.1117
[torch.FloatTensor of size 5x3]

查看size:

print(x.size())

输出结果:

torch.Size([5, 3])

torch.Size 实际上上一个tuple, 因而支持基于tuple的所有运算。

二、Tensor的运算操作

Tensor的运算操作语法有很多种,以下一一演示。

语法1:

y = torch.rand(5, 3)
print(x + y)

输出结果:

 0.9616  0.8727  1.6763
1.4781 0.7961 1.2082
0.6717 0.9821 0.6129
1.2544 1.0118 1.2720
1.0912 0.3207 0.4200
[torch.FloatTensor of size 5x3]

 语法2:

print(torch.add(x, y))

输出结果:

 0.9616  0.8727  1.6763
1.4781 0.7961 1.2082
0.6717 0.9821 0.6129
1.2544 1.0118 1.2720
1.0912 0.3207 0.4200
[torch.FloatTensor of size 5x3]

语法3:

result = torch.Tensor(5, 3)
torch.add(x, y, out=result)
print(result)

输出结果:

 0.9616  0.8727  1.6763
1.4781 0.7961 1.2082
0.6717 0.9821 0.6129
1.2544 1.0118 1.2720
1.0912 0.3207 0.4200
[torch.FloatTensor of size 5x3]

语法4:

# adds x to y
y.add_(x)
print(y)

输出结果:

 0.9616  0.8727  1.6763
1.4781 0.7961 1.2082
0.6717 0.9821 0.6129
1.2544 1.0118 1.2720
1.0912 0.3207 0.4200
[torch.FloatTensor of size 5x3]

任何一个会改变 tensor的操作都会加上下划线,例如x.copy_(y)和x.t_().

语法5:

print(x[:, 1])

输出结果:

 0.4588
0.3067
0.2931
0.6364
0.1411
[torch.FloatTensor of size 5]

任何numpy标准库中的索引操作都可以用于tensor

三、Tensor与numpy的互相转化

1.从torch Tensor 到 numpy Array

构建Tensor

a = torch.ones(5)
print(a)

输出结果:

 1
1
1
1
1
[torch.FloatTensor of size 5]

转化为 Array

b = a.numpy()
print(b)

输出结果:

[ 1.  1.  1.  1.  1.]

对Tensor 进行加法操作:

a.add_(1)
print(a)
print(b)

输出结果:

 2
2
2
2
2
[torch.FloatTensor of size 5] [ 2. 2. 2. 2. 2.]

可以看到对Tensor进行的加法操作映射到了对应Arrayy当中,二者共用内存,属于浅拷贝。

2.从numpy Array到 torch Tensor

构建和转化的方法与前者类似:

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

输出结果:

[ 2.  2.  2.  2.  2.]

 2
2
2
2
2
[torch.DoubleTensor of size 5]

可以看到对Array进行的加法操作同样映射到了对应Tensor当中,二者共用内存,也属于浅拷贝。

四、GPU运算

tensor可以使用CUDA函数移动到GPU上:
if torch.cuda.is_available():
x = x.cuda()
y = y.cuda()
x + y

输出结果:

  0.4457  1.3248  1.9033
0.8010 1.4461 1.0481
1.2691 1.8655 0.4001
0.6913 0.2979 0.2352
1.0372 1.0988 1.2159
[torch.cuda.FloatTensor of size 5x3 (GPU 0)]
 

PyTorch教程之Tensors的更多相关文章

  1. PyTorch教程之Training a classifier

    我们已经了解了如何定义神经网络,计算损失并对网络的权重进行更新. 接下来的问题就是: 一.What about data? 通常处理图像.文本.音频或视频数据时,可以使用标准的python包将数据加载 ...

  2. PyTorch教程之Neural Networks

    我们可以通过torch.nn package构建神经网络. 现在我们已经了解了autograd,nn基于autograd来定义模型并对他们有所区分. 一个 nn.Module模块由如下部分构成:若干层 ...

  3. PyTorch教程之Autograd

    在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Varia ...

  4. [转]搬瓦工教程之九:通过Net-Speeder为搬瓦工提升网速

    搬瓦工教程之九:通过Net-Speeder为搬瓦工提升网速 有的同学反映自己的搬瓦工速度慢,丢包率高.这其实和你的网络服务提供商有关.据我所知一部分上海电信的同学就有这种问题.那么碰到了坑爹的网络服务 ...

  5. jQuery EasyUI教程之datagrid应用(三)

    今天继续之前的整理,上篇整理了datagrid的数据显示及其分页功能 获取数据库数据显示在datagrid中:jQuery EasyUI教程之datagrid应用(一) datagrid实现分页功能: ...

  6. jQuery EasyUI教程之datagrid应用(二)

    上次写到了让数据库数据在网页datagrid显示,我们只是单纯的实现了显示,仔细看的话显示的信息并没有达到我们理想的效果,这里我们丰富一下: 上次显示的结果是这样的 点击查看上篇:jQuery Eas ...

  7. jQuery EasyUI教程之datagrid应用(一)

    最近一段时间都在做人事系统的项目,主要用到了EasyUI,数据库操作,然后抽点时间整理一下EasyUI的内容. 这里我们就以一个简洁的电话簿软件为基础,具体地说一下datagrid应用吧 datagr ...

  8. kali linux 系列教程之metasploit 连接postgresql可能遇见的问题

    kali linux 系列教程之metasploit 连接postgresql可能遇见的问题 文/玄魂   目录 kali linux 下metasploit 连接postgresql可能遇见的问题. ...

  9. kali Linux系列教程之BeFF安装与集成Metasploit

    kali Linux系列教程之BeFF安装与集成Metasploit 文/玄魂 kali Linux系列教程之BeFF安装与集成Metasploit 1.1 apt-get安装方式 1.2 启动 1. ...

随机推荐

  1. 002-Apache Maven 构建生命周期

    Maven - 构建生命周期 什么是构建生命周期 构建生命周期是一组阶段的序列(sequence of phases),每个阶段定义了目标被执行的顺序.这里的阶段是生命周期的一部分. 举例说明,一个典 ...

  2. Android Studio开发常见问题

    Compilation failed; see the compiler error output for details 错误描述 解决方法 原因:文件编码问题.进入项目根目录,在命令提示符下执行以 ...

  3. Android Studio发布项目到jcenter,一行代码引入Module

    前面我们使用自己封装的okhttp项目时候,只需要app/build.gradle文件中加一行代码就能使用项目. compile 'com.ansen.http:okhttpencapsulation ...

  4. Python学习日志_2017/09/08

    今天早晨学习了<Head First :HTML and CSS>:学习了两个章节,感觉从基础学习特别的踏实,能看懂的同时踏踏实实的锻炼了基础的能力.我个人认为无论哪个行业,最重要的永远是 ...

  5. 编辑sass报错:error style.scss (Line 3: Invalid GBK character "\xE5")解决办法

    cmd.exe /D /C call C:/Ruby23-x64/bin/scss.bat --no-cache --update header.scss:header.css error heade ...

  6. Mysql 分区详解

    详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt120 一.什么是表分区通俗地讲表分区是将一大表,根据条件分割成若干个小表.m ...

  7. java中System.getProperty()的作用及使用

    Java中给我们提供了System.getProperty()这个函数,这个函数可以获取到JavaJVM以及操作系统的一些参数,可以供程序判断等. System.getProperty()方法中需要传 ...

  8. 5th-个人总结(Alpha阶段)

    一. 总结自己的Alpha过程 1.团队的整体情况 在团队中这次担任队长的职务. alpha阶段完成情况还算理想,大家都完成了指定的任务.但是也少不了犯错,一些需求没有划分的足够细致,后来功能完成后发 ...

  9. 团队作业8——第二次项目冲刺(Beta阶段)5.18

    1.当天站立式会议照片 会议内容: 本次会议为第一次会议 本次会议在陆大楼2楼召开,本次会议内容: ①:部署第二次敏捷冲刺的计划 ②:做第一天任务的详细分工 ③:规定完成时间是在第二天之前 ④:遇到困 ...

  10. 201521123118《java程序与设计》第七次作业

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 public bo ...