B

.

2

B. 【例题2】奇怪汉诺塔

B.【例题2】奇怪汉诺塔

题目描述

汉诺塔问题,条件如下:

  1. 这里有

    A

    A

    A、

    B

    B

    B、

    C

    C

    C 和

    D

    D

    D 四座塔。 这里有

    n

    n

    n个圆盘,

    n

    n

    n 的数量是恒定的。

  2. 每个圆盘的尺寸都不相同。
  3. 所有的圆盘在开始时都堆叠在塔

    A

    A

    A上,且圆盘尺寸从塔顶到塔底逐渐增大。

  4. 我们需要将所有的圆盘都从塔

    A

    A

    A 转移到塔

    D

    D

    D 上。

  5. 每次可以移动一个圆盘,当塔为空塔或者塔顶圆盘尺寸大于被移动圆盘时,可将圆盘移至这座塔上。
  6. 请你求出将所有圆盘从塔

    A

    A

    A 移动到塔

    D

    D

    D,所需的最小移动次数是多少。


输入格式

没有输入。


输出格式

对于每一个整数

n

(

1

n

12

)

n(1 ≤ n ≤ 12)

n(1≤n≤12),输出一个满足条件的最小移动次数,每个结果占一行。


题目解析

看题目,是汉诺塔,只是常规的三塔变成了四塔.
那么我们就考虑四塔的做法.

首先我们定义

d

i

d_{i}

di​为三塔时

n

n

n个盘从

A

A

A塔到

C

C

C塔所需的步数.
那么可以得出(证明略):

d

1

=

1

d_{1} = 1

d1​=1

d

i

=

d

i

1

2

1

(

i

>

1

)

d_{i} = d_{i-1}*2-1~~~~~~~~~~~~~~(i>1)

di​=di−1​∗2−1              (i>1)

然后我们定义

f

(

i

)

f(i)

f(i)为四塔汉诺塔的最优步数为考虑四塔汉诺塔的算法思想,叫Frame算法:

  1. 用四柱汉诺塔算法把

    A

    A

    A柱上部分的

    n

    r

    n- r

    n−r个碟子通过

    C

    C

    C柱和

    D

    D

    D柱移到

    B

    B

    B柱上(

    f

    (

    n

    r

    )

    f( n- r )

    f(n−r)步)。

  2. 用三柱汉诺塔经典算法把

    A

    A

    A柱上剩余的

    r

    r

    r个碟子通过

    C

    C

    C柱移到

    D

    D

    D柱上(三塔汉诺塔

    r

    r

    r盘的步数)。

  3. 用四柱汉诺塔算法把

    B

    B

    B柱上的

    n

    r

    n-r

    n−r个碟子通过

    A

    A

    A柱和

    C

    C

    C柱移到

    D

    D

    D柱上(

    f

    (

    n

    r

    )

    f(n-r)

    f(n−r)步)。

  4. 依据上边规则求出所有

    r

    (

    1

    r

    n

    )

    r(1≤r≤n)

    r(1≤r≤n)情况下步数

    f

    (

    n

    )

    f(n)

    f(n),取最小值得最终解。

f

[

i

]

=

m

i

n

{

f

[

i

]

2

f

[

j

]

+

d

[

i

j

]

f[i] = min \left\{\begin{matrix} & f[i]\\ & 2 * f[j] + d[i - j]\\ \end{matrix}\right.

f[i]=min{​f[i]2∗f[j]+d[i−j]​


Code

#include <bits/stdc++.h>
#define ll long long
using namespace std; ll d[305], f[305]; int main ()
{
d[1] = f[1] = 1;
for (int i = 2; i <= 12; ++ i)
d[i] = d[i - 1] * 2 + 1;
for (int i = 2; i <= 12; ++ i)
{
f[i] = 999999999;
for (int j = 1; j <= i; ++ j)
f[i] = min (f[i], 2 * f[j] + d[i - j]);
}
for (int i = 1; i <= 12; ++ i)
printf ("%d\n", f[i]);
return 0;
}

[递推]B. 【例题2】奇怪汉诺塔的更多相关文章

  1. C++例题2:汉诺塔问题

    #include<iostream>#include<stdlib.h>using namespace std;void Hanoi(int n,char A,char B,c ...

  2. HDU 汉诺塔系列

    做了这一系列题,表示对汉诺塔与这一系列递推理解加深了 经典汉诺塔:1,2,...,n表示n个盘子,数字大盘子就大,n个盘子放在第1根柱子上,按照从上到下 从小到大的顺序排放,过程中每次大盘都不能放在小 ...

  3. 【BZOJ 1019】【SHOI2008】汉诺塔(待定系数法递推)

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 559  Solved: 341[Submit][Status] ...

  4. 汉诺塔III 递推题

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  5. BZOJ 1019 :[SHOI2008]汉诺塔(递推)

    好吧蒟蒻还是看题解的 其实看到汉诺塔就该想到是递推了 设f[i][j]表示i个在j杆转移到另一个杆的次数 g[i][j]表示i个在j杆转移到那个杆上 可得 f[i][j]=f[i-1][j]+1+f[ ...

  6. hdu 1207 汉诺塔II (DP+递推)

    汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  7. Acwing-96-奇怪的汉诺塔(递推)

    链接: https://www.acwing.com/problem/content/description/98/ 题意: 汉诺塔问题,条件如下: 1.这里有A.B.C和D四座塔. 2.这里有n个圆 ...

  8. HDU 1207 汉诺塔II (递推)

    经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上 ...

  9. HDU 1207 汉诺塔II (找规律,递推)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1207 汉诺塔II Time Limit: 2000/1000 MS (Java/Others)     ...

随机推荐

  1. js & bitwise operator

    js & bitwise operator bitwise operator https://github.com/Advanced-Frontend/Daily-Interview-Ques ...

  2. express+mongodb开发网站

    准备工作: 1安装git 进入官网  使用方法:使用git教程 2安装node.js 进入官网 3安装mongodb 进入官网 需要技术: 1.基础知识:html .css. js .jquery 2 ...

  3. DeFi里的灰度?每月获得高收益?BGV代币初探

    2020年已经接近了尾声,但是DeFi市场的热闹场面并没有停止,或者说,一直在延续.资本市场不断将大批的资金投入到DeFi市场中,以求在这波热潮中赚得一波又一波红利. 美国时间12月21日,Bacca ...

  4. 揭秘高倍矿币 Baccarat BGV,为何NGK DeFi的财富效应如此神奇?

    作为区块链4.0代表的NGK公链,这次也将借助它自己的DeFi版块NGK Baccarat,开启属于它自己的千倍财富之旅. 如果说,比特币能让没有银行账户的人,可以在全球任何时间.地点都能自由进行交易 ...

  5. [转]c++使用thread类时编译出错,对‘pthread_create’未定义的引用

    转载地址:https://blog.csdn.net/wuhui20091515/article/details/52531202 例子1 #include <iostream> #inc ...

  6. redis5.* 手动构建集群

    1.集群的概念 集群是一组相互独立的.通过高速网络互联的计算机,它们构成了一个组,并以单一系统的模式加以管理.一个客户与集群相互作用时,集群像是一个独立的服务器.集群配置是用于提高可用性和可缩放性.当 ...

  7. 从跳频技术聊CDMA/WIFI之母海蒂·拉玛传奇的一生

    导语:本篇的内容都是 文末的参考文章摘要而来的,本人根据自己的癖好,以及对 海蒂·拉玛 人生的感慨整理成本文. "WiFi"之母的海蒂·拉玛在中国的知名度,比起克劳德·香农应该也不 ...

  8. iframe 调用父页面元素

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="IFrame.aspx.cs ...

  9. Pyqt5实现model/View,解决tableView出现空白行问题。

    项目中表格需要显示5万条数据以上,并且实时刷新.开始使用的tableWidget,数据量一大显得力不从心,所以使用Qt的Model/View来重新实现.下面是更改之前编写的小Demo. import ...

  10. OAID 文档与获取DemoAPK

    OAID 查看器 接入 OAID SDK 的 Demo 工程 完整项目地址 Github 文档与 Demo 下载 release 提供 APK 下载 支持设备见 说明文档 常见问题见 F&Q文 ...