一、背景 && 定义


多线程环境下,只要有并发问题,就要保证数据的安全性,一般指的是通过 synchronized 来进行同步。

另一个问题是,多个线程之间如何协作呢

我们看一个仓库出货问题(更具体一些,快餐店直接放好炸货的架子,不过每次只放一份)

  1. 假设仓库中只能存放一件商品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走进行消费;
  2. 如果仓库中没有商品,那么生产者将产品放入仓库,否则停止生产并等待,直到仓库中的产品被消费者取走为止;
  3. 如果仓库中放有产品,消费者可快速取走并消费,否则停止消费并等待,直到仓库中再次放入产品为止。

这其实就是一个线程同步问题。生产者和消费者共享同一个资源,并且生产者和消费者之间互相依赖,互为条件。

如果一个快餐店:

先点单,餐出来之后再收钱。这种模式叫BIO-阻塞IO模式。

如果一个快餐店:

先收钱,收完钱消费者在旁边等。这种就是生产者-消费者模式。

这类问题里,同步的候只有 synchronized 是不够的,因为他虽然能解决资源的共享问题,实现资源的同步更新,但是无法在不同线程之间进行消息传递(通信)。

所以只有我们之前所说的加锁排队是不够的,还要有通知

定义:

生产者和消费者在同一时间段内共用同一个存储空间,生产者往存储空间中添加产品,消费者从存储空间中取走产品,当存储空间为空时,消费者阻塞,当存储空间满时,生产者阻塞。

为了解决双方能力不等而等待的问题,引入对应的解决方案。生产者消费者模型是一种并发协作模型。


二、解决方式介绍


2.1 管程法

  1. 生产者:负责生产数据的模块(模块可能是方法、对象、线程、进程);
  2. 消费者:负责处理数据的模块(模块可能是方法、对象、线程、进程);
  3. 缓冲区:消费者不能直接使用生产者的数据,它们之间有个“缓冲区”(缓冲区一般是队列)。

生产者和消费者都是通过缓冲区进行数据的 放 和 拿 。

这样的话,一来可以避免旱的旱死,涝的涝死的问题:不管哪一方过快或者过慢,缓冲区始终有一部分数据;二来能够达到生产者和消费者的解耦,不再直接通信,从而提高效率。

因为容器相当于一个输送商品的管道,所以成为管程法

2.2 信号灯法

采用类似红灯绿灯的模式,决定车走还是人走。

  • 管程法使用容器的状态来控制,数据在容器中;
  • 而信号灯法只是用信号来给生产者和消费者提醒,他们的交互数据并不由信号灯来保管。

2.3 Object类

jdk 里面 Object 类老早就有提供解决线程间通信的问题的方法:

  1. wait():表示线程一直等待,直到其他线程通知(也就是调用了notify或者notifyAll方法),与sleep不同,会释放锁;
  2. wait(long timeout):指定时间;
  3. notify():唤醒一个处于等待状态的线程;
  4. notifyAll():唤醒同一个对象上所有调用 wait() 方法的线程,优先级别高的线程优先调度。

这几个方法都是在同步方法或者同步代码块中使用,否则会抛出异常。

(很多面试题问 Java 的 Object 类有哪些方法,都是希望得到关于这块的答案,引到多线程)


三、管程法实现


管程法实现的四个角色:

  1. 生产者和消费者都是多线程;
  2. 中间的缓冲区应该是一个容器,并且需要的是一个并发容器,java.util.concurrent包里面已经提供了;
  3. 资源,也就是各个角色来回交换的商品。

利用 Object 类的几个方法,来实现管程法,以下是代码示例:

/**
* 协作模型:生产者消费者模型实现:管程法
*/
public class Cooperation1 {
public static void main(String[] args) {
Container container = new Container();
new Producer(container).start();
new Consumer(container).start();
}
} /**
* 生产者
*/
class Producer extends Thread{
Container container;
public Producer(Container container){
this.container = container;
}
@Override
public void run() {
//生产过程
for (int i=0; i<10; i++){
System.out.println("生产第 " + i + " 个馒头");
container.push(new Hamburger(i));
}
}
} /**
* 消费者
*/
class Consumer extends Thread{
Container container;
public Consumer(Container container){
this.container = container;
}
@Override
public void run() {
//消费过程
for (int i=0; i<10; i++){
System.out.println("消费第 " + container.pop().id + " 个馒头");
}
}
} /**
* 缓冲区,操作商品,并和生产者、消费者交互
*/
class Container{
Hamburger[] food = new Hamburger[10];
private int count = 0;
//存储:生产
public synchronized void push(Hamburger hamburger){
if (count == food.length){
try {
this.wait();//阻塞,但是等待消费者通知后会解除
} catch (InterruptedException e) {
e.printStackTrace();
}
}
food[count++] = hamburger;
this.notifyAll();//说明存在数据了,通知消费者消费
}
//获取:消费
public synchronized Hamburger pop(){
if (count ==0 ){
try {
this.wait();//阻塞,直到生产者通知后会解除
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Hamburger ans = food[--count];
this.notifyAll();//存在空余空间了,通知生产者生产
return ans;
}
} /**
* 商品
*/
class Hamburger{
int id;
public Hamburger(int id) {
this.id = id;
}
}

其中的核心有这么几点:

  1. 容器相当于一个栈,是后进先出的;
  2. 容器的两个方法对于资源的操作,一个和生产者交互,一个和消费者交互,除了 synchronized 修饰,因为两个方法是互斥的,所以利用 wait 和 notify 方法使他们完成阻塞和解除阻塞;
  3. 生产者和容器交互,添加数据;
  4. 消费者和容器交互,删除数据。

前面关于 线程的阻塞问题,生命周期里的阻塞,完整的可能情况,就包含这里的阻塞情况:



四、信号灯法实现


和上一种通过容器的容量让线程之间互相通知的方法不同,信号灯法没有用数据缓存的方式,而是用信号灯来指示双方,对方是否已经准备好了要和你通信。

下面是一个 电视直播和观众的代码示例,通过信号灯,通知演员和观众直播,确保演员在演的时候,让观众来看。

/**
* 协作模型:生产者消费者实现:信号灯法
*/
public class Cooperation2 {
public static void main(String[] args) {
TV tv = new TV();
new Actor(tv).start();
new Fans(tv).start();
}
}
/**
* 生产者:演员
*/
class Actor extends Thread{
TV tv;
public Actor(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i=0; i<10; i++){
if (i%2 == 0){
this.tv.play("节目 " + i);
}else{
this.tv.play("广告 " + i);
}
}
}
}
/**
* 消费者:观众
*/
class Fans extends Thread{
TV tv;
public Fans(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i=0; i<10; i++){
tv.watch();
}
}
} /**
* 共同资源:电视直播
*/
class TV{
String voice;
//信号灯,如果为真则演员准备,观众等待
//如果为假,则观众就位,演员等待
boolean flag = true; //表演方法:针对生产者
public synchronized void play(String voice){
//演员等待
if (!flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
this.voice = voice;
System.out.println("表演 "+voice +" ing");
//唤醒观众
this.notifyAll();
this.flag = !flag;
} //观看方法:针对消费者
public synchronized void watch(){
//观众等待
if (flag){
try {
this.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("观看 " + voice +" ing");
this.notifyAll();
this.flag = !flag;
}
}

可以看到,相比管程法的核心区别是:

TV 没有用一个容器存储数据,只是通过生产者是否生产,来决定信号灯的标志,以此通知消费者来消费。

显然这两种实现方法,有不同的适用场景,那就是决定于生产者消费者是否有数据沟通。

java多线程:线程间通信——生产者消费者模型的更多相关文章

  1. Java多线程——线程间通信

    Java多线系列文章是Java多线程的详解介绍,对多线程还不熟悉的同学可以先去看一下我的这篇博客Java基础系列3:多线程超详细总结,这篇博客从宏观层面介绍了多线程的整体概况,接下来的几篇文章是对多线 ...

  2. Java线程间通信--生产者消费者

    class ProducerConsumerDemo {    public static void main(String[] args)     {        Resource r = new ...

  3. 线程间通信--生产者消费者 升级版JDK5

    import java.util.concurrent.locks.*; /*1.新的解锁,上锁操作,据说是jdk5.0升级版,以前的枷锁,解锁都是隐藏的,默认的,现在变成显式 2.新的异常处理方式  ...

  4. 第23章 java线程通信——生产者/消费者模型案例

    第23章 java线程通信--生产者/消费者模型案例 1.案例: package com.rocco; /** * 生产者消费者问题,涉及到几个类 * 第一,这个问题本身就是一个类,即主类 * 第二, ...

  5. 【Java并发编程】:生产者—消费者模型

    生产者消费者问题是线程模型中的经典问题:生产者和消费者在同一时间段内共用同一存储空间,生产者向空间里生产数据,而消费者取走数据. 这里实现如下情况的生产--消费模型: 生产者不断交替地生产两组数据“姓 ...

  6. 线程锁、threading.local(flask源码中用的到)、线程池、生产者消费者模型

    一.线程锁 线程安全,多线程操作时,内部会让所有线程排队处理.如:list/dict/Queue 线程不安全 + 人(锁) => 排队处理 1.RLock/Lock:一次放一个 a.创建10个线 ...

  7. 锁丶threading.local丶线程池丶生产者消费者模型

    一丶锁 线程安全: 线程安全能够保证多个线程同时执行时程序依旧运行正确, 而且要保证对于共享的数据,可以由多个线程存取,但是同一时刻只能有一个线程进行存取. import threading v = ...

  8. 守护进程,进程安全,IPC进程间通讯,生产者消费者模型

    1.守护进程(了解)2.进程安全(*****) 互斥锁 抢票案例3.IPC进程间通讯 manager queue(*****)4.生产者消费者模型 守护进程 指的也是一个进程,可以守护着另一个进程 一 ...

  9. Java并发——线程间通信与同步技术

    传统的线程间通信与同步技术为Object上的wait().notify().notifyAll()等方法,Java在显示锁上增加了Condition对象,该对象也可以实现线程间通信与同步.本文会介绍有 ...

随机推荐

  1. java排序方式对比

    尽量使用使用Comparator进行排序, 在java中,要想给数据进行排序,有两种事项方式, 一种为实现Comparable接口, 一种是实现Comparator接口, public interfa ...

  2. Linux版 乐影音下载器(视频下载器) 使用方法

    如果你不知道Linux为何物,那么请回去选择前两种下载方式之一. 只提供Linux 64位的乐影音下载器(点击下载),在Linux Mint 19.1  64位.Python 3.6环境下测试能正常运 ...

  3. 聊聊Django应用的部署和性能的那些事儿

    随着工作的深入,我越来越发现Python Web开发中有很多坑,也一直在羡慕AspNetCore和Go等的可执行文件部署和高性能,以及Spring生态的丰富,不过因为工作用了Django,生活还是要继 ...

  4. 关于docker--详解安装,常规操作,导入导出等(2017-3-29)

    测试环境 :CentOS 7.1 64位 目的:展示docker的常规使用(安装,常规操作,导入导出等) 其他:关于原理等请参考文章后面的延伸阅读,本文不做深入探讨,且方法不唯一 0x01 关于安装d ...

  5. Bug -- WebService报错(两个类具有相同的 XML 类型名称 "{http://webService.com/}getPriceResponse"。请使用 @XmlType.name 和 @XmlType.namespace 为类分配不同的名称。)

    调用WebService时报错 解决方法: 在提示的两个java文件中加如一行代码namespace = "http://namespace.thats.not.the.same.as.th ...

  6. Linux重定向用法详解

    大家好,我是良许. 相信大家平时都会有需要复制粘贴数据的时候,如果是打开文件进行复制粘贴,就不可避免的需要较多的鼠标与键盘的操作,就会比较繁琐.那么有没有可以省掉这些繁琐操作的复制粘贴的方法呢? 答案 ...

  7. IDEA解决MAVEN下载插件慢问题

    原文链接:https://blog.csdn.net/qq_25983579/article/details/104398915 使用阿里的maven镜像 右键项目选中maven选项,然后选择“ope ...

  8. PHP xml_parser_create() 函数

    定义和用法 xml_parser_create() 函数创建 XML 解析器.高佣联盟 www.cgewang.com 如果成功,该函数则返回可被其它 XML 函数使用的资源句柄.如果失败,则返回 F ...

  9. PHP xml_parse() 函数

    定义和用法 xml_parse() 函数解析 XML 文档.高佣联盟 www.cgewang.com 如果成功,该函数则返回 TRUE.如果失败,则返回 FALSE. 语法 xml_parse(par ...

  10. 对Word2Vec的理解

    1. word embedding 在NLP领域,首先要把文字或者语言转化为计算机能处理的形式.一般来说计算机只能处理数值型的数据,所以,在NLP的开始,有一个很重要的工作,就是将文字转化为数字,把这 ...