题目描述

有一棵点数为 N 的树,树边有边权。给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。

输入输出格式

输入格式:

第一行包含两个整数 N, K 。接下来 N-1 行每行三个正整数 fr, to, dis , 表示该树中存在一条长度为 dis 的边 (fr, to) 。输入保证所有点之间是联通的。

输出格式:

输出一个正整数,表示收益的最大值。

思路

设 \(f_{i,j}\) 为以 \(i\) 为根的子树选 \(j\) 个点染成黑色的贡献。考虑一条边的贡献,它被一条路径经过就会产生贡献,经过这个点的路径的数量显然是左边黑色节点个数和右边黑色节点个数的积。就可以得出一个节点 \(u\) 被 \((j-m) \times j + (size_u-j) \times (n-m-size_u+j)\),其中 \(j\) 为已经选了的黑色节点个数,\(size\) 为子树大小。直接转移就行了

/************************************************
*Author : lrj124
*Created Time : 2019.03.18.20:14
*Mail : 1584634848@qq.com
*Problem : luogu3177
************************************************/
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2000 + 10;
struct Edge {
int to,val;
Edge(int v,int w) : to(v),val(w) {}
};
vector<Edge> edge[maxn];
long long f[maxn][maxn];
int n,K,size[maxn];
inline void dp(int now,int fa) {
size[now] = 1;
f[now][0] = f[now][1] = 0;
for (size_t i = 0;i < edge[now].size();i++)
if (edge[now][i].to ^ fa) {
dp(edge[now][i].to,now);
size[now] += size[edge[now][i].to];
}
for (size_t i = 0;i < edge[now].size();i++) if (edge[now][i].to ^ fa)
for (int j = min(K,size[now]);j >= 0;j--)
for (int k = 0;k <= min(j,size[edge[now][i].to]);k++)
if (f[now][j-k] >= 0) f[now][j] = max(f[now][j],f[now][j-k]+f[edge[now][i].to][k]+1ll*k*(K-k)*edge[now][i].val+1ll*(size[edge[now][i].to]-k)*(n-size[edge[now][i].to]-K+k)*edge[now][i].val);
}
int main() {
scanf("%d%d",&n,&K);
memset(f,128,sizeof(f));
for (int i = 1,u,v,w;i < n;i++) {
scanf("%d%d%d",&u,&v,&w);
edge[u].push_back(Edge(v,w));
edge[v].push_back(Edge(u,w));
}
dp(1,0);
printf("%lld",f[1][K]);
return 0;
}

【HAOI2015】树上染色 - 树形 DP的更多相关文章

  1. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  2. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  3. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  4. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  5. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  6. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  7. 【HAOI2015】树上染色—树形dp

    [HAOI2015]树上染色 [题目描述]有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得 ...

  8. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

  9. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

随机推荐

  1. 设计模式:bridge模式

    目的:将“类的功能层次结构”和“类的实现层次结构”分类 类的功能层次:通过类的继承添加功能(添加普通函数) 类的实现层次:通过类的继承实现虚函数 理解:和适配器模式中的桥接方法相同 例子: class ...

  2. Monster Audio 使用教程(四)Wifi 远程遥控

    Android端下载二维码:(链接指向的是apk包地址,所以微信可能打不开,请用自带浏览器扫描二维码)  IOS下载二维码: 安装好上面的app,确保你的移动端设备和你电脑连接的是同一个路由器(也就是 ...

  3. 前端学习(十七):JavaScript常用对象

    进击のpython ***** 前端学习--JavaScript常用对象 JavaScript中的所有事物都是对象:字符串.数字.数组.日期,等等 在JavaScript中,对象是拥有属性和方法的数据 ...

  4. 分布式锁-Redis方案

    #!/usr/bin/env python # coding=utf-8 import time import redis class RedisLock(object): def __init__( ...

  5. 蒲公英 · JELLY技术周刊 Vol.16 谷歌首个线上 Web 开发者大会

    蒲公英 · JELLY技术周刊 Vol.16 近期,谷歌有史以来的第一次线上谷歌 Web 开发者大会,Web Vitals.PWA.DevTools 和 Lighthouse 6.0 等一系列特性或产 ...

  6. shell脚本报错:-bash: xxx: /bin/sh^M: bad interpreter: No such file or directory

    今天执行一个shell脚本,然后在执行的时候报错,脚本内容很简单,仅供测试: #!/bin/sh echo "test shell " 具体报错信息如下 [root@localho ...

  7. 10-Pandas之数据融合(pd.merge()、df.join()、df.combine_first()详解)

    一.pd.merge() pd.merge()的常用参数 参数 说明 left 参与合并的左侧DataFrame right 参与合并的右侧DataFrame how 如何合并.值为{'left',' ...

  8. MediaStreamConstraints对象

    MediaStreamConstraints对象作用是在调用getUserMedia()时用于指定应在返回的MediaStream中包括哪些轨道,以及(可选)为这些轨道的设置约束. 属性 audio布 ...

  9. 7.9 NOI模拟赛 数列 交互 高精 字符串

    这是交互题 也是一个防Ak的题目 4个\(subtask\) 需要写3个不尽相同的算法. 题目下发了交互程序 所以调试的时候比较方便 有效防止\(CE\). 题目还有迷糊选手的点 数字位数为a 范围是 ...

  10. Sharding-JDBC实现水平拆分-单库分表

    参考资料:猿天地   https://mp.weixin.qq.com/s/901rNhc4WhLCQ023zujRVQ 作者:尹吉欢 当单表的数量急剧上升,超过了1千万以上,这个时候就要对表进行水平 ...