EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计)

从定义可知,该算法是用来估计参数的,这里约定参数为  。既然是迭代算法,那么肯定有一个初始值,记为  ,然后再通过算法计算 

通常,当模型的变量都是观测变量时,可以直接通过极大似然估计法,或者贝叶斯估计法估计模型参数。但是当模型包含隐变量时,就不能简单的使用这些估计方法

举个具体的栗子:

永远在你身后:Matplotlib输出动画实现K-means聚类过程可视化​zhuanlan.zhihu.com

K-means算法中,除了给定的样本(也就是观测变量)  以及参数  (也就是那些个聚类的中心)之外,还包含一个隐变量(记为  ),它是每个样本的所属类别

可以理解为,我们之所以对一批样本进行聚类,也是因为认为这些样本是有它们潜在的类别的,也就是说还有一个隐变量是我们没有(或者无法)观测到的

下面先给出EM算法的步骤公式,然后再对公式进行推导。假设在第  次迭代后参数的估计值为  ,对于第  次迭代,分为两步

  • E步,求期望:

关于的随机变量的函数的期望,公式在后面会给出

  • M步,最大化:

其中,  称为  函数,是EM算法的核心。下面就来对公式进行推导


给定一组观测数据记为  ,以及参数  。因为  是独立同分布,所以有以下对数似然函数:

可以通过极大似然估计来求解最优参数,即:

但是由于隐变量的存在,  变为

注意:联合概率公式 P(XZ)=P(X|Z)P(Z)

这样直接求解就变得困难,一个办法是构造一个容易优化的——关于对数似然函数的——下界函数,通过不断的优化这个下界,迭代逼近最优参数。为了方便下面推导流畅,提前先贴几个公式

随机变量的数学期望

随机变量函数的数学期望。设  ,则  的期望为:

相对熵

下面是具体的推导。首先引入隐变量  的概率分布  ,满足

并且以下等式成立

两边同时取对数

同时求两边在  上的期望

因为  与  无关,所以求期望仍然不变:

然后将右边展开

由此得到对数似然函数的下界。并且当  ,上式可以取到等号,由相对熵的性质可知,相对熵为0,也就是 

其中  是  的概率分布,但是因为无法观测  ,所以  未知,可以假设其等于  ,也就是  关于给定  与  的后验,且  是由初始值  一次次迭代计算而来,所以此处的  是迭代  次后的值

然后通过极大似然估计得到:

以上,就是EM算法中E步的由来,然后令  ,就得到了M步的公式

以上就是EM算法的推导过程,为了加深理解,我们可以换一个角度来总结一下。前面我们定义了似然函数

由于累加号嵌套在  函数中,难以直接进行求解,如果换一个似然函数,就容易的多

但是,又由于的  是隐变量,无法得到它的概率分布,只能通过给定的  和  来计算它的后验分布,然后求似然函数在此分布上的期望

最后,再寻找能使似然函数的期望最大化的参数

EM算法理论与推导的更多相关文章

  1. Machine Learning系列--EM算法理解与推导

    EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算 ...

  2. EM算法定义及推导

    EM算法是一种迭代算法,传说中的上帝算法,俗人可望不可及.用以含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计 EM算法定义 输入:观测变量数据X,隐变量数据Z,联合分布\(P(X,Z|\t ...

  3. python机器学习笔记:EM算法

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于E ...

  4. 高斯混合模型参数估计的EM算法

    # coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...

  5. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

  6. EM算法求高斯混合模型參数预计——Python实现

    EM算法一般表述:       当有部分数据缺失或者无法观察到时,EM算法提供了一个高效的迭代程序用来计算这些数据的最大似然预计.在每一步迭代分为两个步骤:期望(Expectation)步骤和最大化( ...

  7. EM算法 小结

    猴子吃果冻 博客园 首页 新随笔 联系 管理 订阅 随笔- 35  文章- 0  评论- 3  4-EM算法原理及利用EM求解GMM参数过程   1.极大似然估计 原理:假设在一个罐子中放着许多白球和 ...

  8. 【机器学习】EM算法详细推导和讲解

    今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的 ...

  9. EM算法以及推导

    EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y) ...

随机推荐

  1. numpy中array数组对象的储存方式(n,1)和(n,)的区别

    资料:https://stackoverflow.com/questions/22053050/difference-between-numpy-array-shape-r-1-and-r 这篇文章是 ...

  2. Android学习笔记主题(Theme)资源文件

    安卓的主题资源文件,可以用于对Android应用的美化. styles文件是主题资源文件. 定义一个主题资源格式如下: <resources> <!-- Base applicati ...

  3. 【JMeter_21】JMeter逻辑控制器__模块控制器<Module Controller>

    模块控制器<Module Controller> 业务逻辑: 可以理解为引用.调用的意思,执行内容为Module To Run种所选的内容,引用范围为当前测试计划内的测试片段.逻辑控制器& ...

  4. liunx 常用快捷键

    1.命令行快捷键ctrl + a //把光标移动到最前面ctrl + e //把光标移动到最后面ctrl + l //清屏ctrl + c //取消ctrl + u //把光标到行首的删除ctrl + ...

  5. Selenium自动化测试与练习

    Selenium WebDriver 提供了web自动化各种语言(java python ruby等等) 调用接口库 提供 各种浏览器的驱动(web driver) 来驱动浏览器的 特点 测试程度可以 ...

  6. JavaWeb网上图书商城完整项目--day02-14.登录功能的login页面处理

    1.现在注册成功之后,我们来到登录页面,登录页面在于 在登录页面.我们也需要向注册页面一样对登录的用户名.密码 验证码等在jsp页面中进行校验,校验我们单独放置一个login.js文件中进行处理,然后 ...

  7. 1、struct2第一个项目登陆流程

    这些jar包的作用:第一个日志记录 第二个 使用freemarker制作页面,freemarker和jsp一样都是页面操作的 ognl是struct2提供的向el标签设置的包 struct2-core ...

  8. C# MVC LayUI实现下拉框二级联动

    一.layui.use 1.LayUI的官方使用文档:https://www.layui.com/doc/ 2.layui的内置模块不是默认就加载好的,必须要执行启动模块的这种方法后模块才会加载: 3 ...

  9. Spring IoC BeanDefinition 的加载和注册

    前言 本系列全部基于 Spring 5.2.2.BUILD-SNAPSHOT 版本.因为 Spring 整个体系太过于庞大,所以只会进行关键部分的源码解析. 本篇文章主要介绍 Spring IoC 容 ...

  10. 入门大数据---Sqoop基本使用

    一.Sqoop 基本命令 1. 查看所有命令 # sqoop help 2. 查看某条命令的具体使用方法 # sqoop help 命令名 二.Sqoop 与 MySQL 1. 查询MySQL所有数据 ...