tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

介绍参数:

input:指卷积需要输入的参数,具有这样的shape[batch, in_height, in_width, in_channels],分别是[batch张图片, 每张图片高度为in_height, 每张图片宽度为in_width, 图像通道为in_channels]。

filter:指用来做卷积的滤波器,当然滤波器也需要有相应参数,滤波器的shape为[filter_height, filter_width, in_channels, out_channels],分别对应[滤波器高度, 滤波器宽度, 接受图像的通道数, 卷积后通道数],其中第三个参数 in_channels需要与input中的第四个参数 in_channels一致,out_channels第一看的话有些不好理解,如rgb输入三通道图,我们的滤波器的out_channels设为1的话,就是三通道对应值相加,最后输出一个卷积核。

strides:代表步长,其值可以直接默认一个数,也可以是一个四维数如[1,2,1,1],则其意思是水平方向卷积步长为第二个参数2,垂直方向步长为1.其中第一和第四个参数我还不是很明白,请大佬指点,貌似和通道有关系。

padding:代表填充方式,参数只有两种,SAME和VALID,SAME比VALID的填充方式多了一列,比如一个3*3图像用2*2的滤波器进行卷积,当步长设为2的时候,会缺少一列,则进行第二次卷积的时候,VALID发现余下的窗口不足2*2会直接把第三列去掉,SAME则会填充一列,填充值为0。

use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true。大概意思是是否使用gpu加速,还没搞太懂。

name:给返回的tensor命名。给输出feature map起名字。

tf.nn.max_pool(value, ksize, strides, padding, name=None)

value:池化的输入,一般池化层接在卷积层的后面,所以输出通常为feature map。feature map依旧是[batch, in_height, in_width, in_channels]这样的参数。

ksize:池化窗口的大小,参数为四维向量,通常取[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1。ps:估计面tf.nn.conv2d中stries的四个取值也有              相同的意思。

stries:步长,同样是一个四维向量。

padding:填充方式同样只有两种不重复了。

 

tf.nn.conv2d函数和tf.nn.max_pool函数介绍的更多相关文章

  1. TF中conv2d和kernel_initializer方法

    conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...

  2. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  3. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  4. tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码

    这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...

  5. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  6. TF-池化函数 tf.nn.max_pool 的介绍

    转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...

  7. tf入门-池化函数 tf.nn.max_pool 的介绍

    转载自此大神 http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积 ...

  8. 小记tensorflow-1:tf.nn.conv2d 函数介绍

    tf.nn.conv2d函数介绍 Input: 输入的input必须为一个4d tensor,而且每个input的格式必须为float32 或者float64. Input=[batchsize,im ...

  9. tf.nn.conv2d卷积函数之图片轮廓提取

    一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_for ...

随机推荐

  1. python下载及安装步骤

    Python安装 1.浏览器打开网址:www.python.org 2.根据电脑系统选择下载 3.确定电脑系统属性,此处我们以win10的64位操作系统为例 4.安装python 3.6.3 双击下载 ...

  2. springboot整合oss

    原文链接:https://blog.csdn.net/weixin_42370891/article/details/99102508 登录阿里云,进入到控制台 创建Bucket 导入如下依赖 < ...

  3. Java 源码刨析 - HashMap 底层实现原理是什么?JDK8 做了哪些优化?

    [基本结构] 在 JDK 1.7 中 HashMap 是以数组加链表的形式组成的: JDK 1.8 之后新增了红黑树的组成结构,当链表大于 8 并且容量大于 64 时,链表结构会转换成红黑树结构,它的 ...

  4. Spring Data 教程 - Redis

    1. Redis简介 Redis(Remote Dictionary Server ),即远程字典服务,是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value ...

  5. 小师妹学JVM之:JIT中的LogCompilation

    目录 简介 LogCompilation简介 LogCompilation的使用 解析LogCompilation文件 总结 简介 我们知道在JVM中为了加快编译速度,引入了JIT即时编译的功能.那么 ...

  6. Redis安装过程jemalloc/jemalloc.h报错

    问题: [root@localhost redis-3.0.0]# make cd src && make all make[1]: Entering directory `/data ...

  7. JavaScript 集合基本操作

    参考 MDN 集合 Array 1. 2种创建数组的方式 var fruits = [] ; var friuits = new Array(); 2. 遍历 fruits.forEach(funct ...

  8. springmvc-实现增删改查

    30. 尚硅谷_佟刚_SpringMVC_RESTRUL_CRUD_显示所有员工信息.avi现在需要使用restful风格实现增删改查,需要将post风格的请求转换成PUT 请求和DELETE 请求 ...

  9. Java面试必备Springioc上

    配置文件中 Proprety name值必须和 类中的成员变量private IUsedao  userDao一一对应 工程项目的代码为:

  10. 在PHPstorm中使用数组短语法[],出现红色波浪

    在PHPstorm中使用数组短语法[],出现红色波浪 1. 在tp3.2.3项目中使用数组短语法[],报错如下错误: Short array syntax is allowed in PHP 5.4 ...