Spark Dataset DataFrame空值null,NaN判断和处理

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.Dataset
import org.apache.spark.sql.Row
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Column
import org.apache.spark.sql.DataFrameReader
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.functions._
import org.apache.spark.sql.DataFrameStatFunctions
import org.apache.spark.ml.linalg.Vectors math.sqrt(-1.0)
res43: Double = NaN math.sqrt(-1.0).isNaN()
res44: Boolean = true val data1 = data.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
data1: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] data1.limit(10).show
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0| null| 27| null| no| 4| 14| 6| null|
| 0| null| 32| null| yes| 1| 12| 1| null|
| 0| null| 57| null| yes| 5| 18| 6| null|
| 0| null| 22| null| no| 2| 17| 6| null|
| 0| null| 32| null| no| 2| 17| 5| null|
| 0|female| 22| null| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+ // 删除所有列的空值和NaN
val resNull=data1.na.drop()
resNull: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] resNull.limit(10).show()
+-------+------+---+------------+--------+-------------+---------+----------+------+
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0|female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
| 0| male| 37| 15| yes| 2| 20| 7| 2|
| 0| male| 27| 4| yes| 4| 18| 6| 4|
| 0| male| 47| 15| yes| 5| 17| 6| 4|
| 0|female| 22| 1.5| no| 2| 17| 5| 4|
| 0|female| 27| 4| no| 4| 14| 5| 4|
| 0|female| 37| 15| yes| 1| 17| 5| 5|
+-------+------+---+------------+--------+-------------+---------+----------+------+ //删除某列的空值和NaN
val res=data1.na.drop(Array("gender","yearsmarried")) // 删除某列的非空且非NaN的低于10的
data1.na.drop(10,Array("gender","yearsmarried")) //填充所有空值的列
val res123=data1.na.fill("wangxiao123")
res123: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res123.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation| rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao123| 27| wangxiao123| no| 4| 14| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| yes| 1| 12| 1|wangxiao123|
| 0|wangxiao123| 57| wangxiao123| yes| 5| 18| 6|wangxiao123|
| 0|wangxiao123| 22| wangxiao123| no| 2| 17| 6|wangxiao123|
| 0|wangxiao123| 32| wangxiao123| no| 2| 17| 5|wangxiao123|
| 0| female| 22| wangxiao123| no| 2| 12| 1|wangxiao123|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ //对指定的列空值填充
val res2=data1.na.fill(value="wangxiao111",cols=Array("gender","yearsmarried") )
res2: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res2.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao111| 27| wangxiao111| no| 4| 14| 6| null|
| 0|wangxiao111| 32| wangxiao111| yes| 1| 12| 1| null|
| 0|wangxiao111| 57| wangxiao111| yes| 5| 18| 6| null|
| 0|wangxiao111| 22| wangxiao111| no| 2| 17| 6| null|
| 0|wangxiao111| 32| wangxiao111| no| 2| 17| 5| null|
| 0| female| 22| wangxiao111| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ val res3=data1.na.fill(Map("gender"->"wangxiao222","yearsmarried"->"wangxiao567") )
res3: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res3.limit(10).show()
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
|affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+
| 0| male| 37| 10| no| 3| 18| 7| 4|
| 0|wangxiao222| 27| wangxiao567| no| 4| 14| 6| null|
| 0|wangxiao222| 32| wangxiao567| yes| 1| 12| 1| null|
| 0|wangxiao222| 57| wangxiao567| yes| 5| 18| 6| null|
| 0|wangxiao222| 22| wangxiao567| no| 2| 17| 6| null|
| 0|wangxiao222| 32| wangxiao567| no| 2| 17| 5| null|
| 0| female| 22| wangxiao567| no| 2| 12| 1| null|
| 0| male| 57| 15| yes| 2| 14| 4| 4|
| 0| female| 32| 15| yes| 4| 16| 1| 2|
| 0| male| 22| 1.5| no| 4| 14| 4| 5|
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ //查询空值列
data1.filter("gender is null").select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+ data1.filter("gender is not null").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+ data1.filter( data1("gender").isNull ).select("gender").limit(10).show
+------+
|gender|
+------+
| null|
| null|
| null|
| null|
| null|
+------+ data1.filter("gender<>''").select("gender").limit(10).show
+------+
|gender|
+------+
| male|
|female|
| male|
|female|
| male|
| male|
| male|
| male|
|female|
|female|
+------+

Spark Dataset DataFrame空值null,NaN判断和处理的更多相关文章

  1. Spark2 Dataset DataFrame空值null,NaN判断和处理

    import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.spark ...

  2. Spark Dataset DataFrame 操作

    Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1. ...

  3. oracle中空值null的判断和转换:NVL的用法

    1.NULL空值概念 数据库里有一个很重要的概念:空值即NULL.有时表中,更确切的说是某些字段值,可能会出现空值, 这是因为这个数据不知道是什么值或根本就不存在. 2.NULL空值判断 空值不等同于 ...

  4. dataframe去除null、NaN和空字符串

    去除null.NaN 去除 dataframe 中的 null . NaN 有方法 drop ,用 dataframe.na 找出带有 null. NaN 的行,用 drop 删除行: import ...

  5. Spark提高篇——RDD/DataSet/DataFrame(二)

    该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 该篇主要介绍DataSet与DataFrame. 一.生成DataFrame ...

  6. js判断undefined类型,undefined,null,NaN的区别

    js判断undefined类型 今天使用showModalDialog打开页面,返回值时.当打开的页面点击关闭按钮或直接点浏览器上的关闭则返回值是undefined   所以自作聪明判断       ...

  7. Javascript 中的非空判断 undefined,null, NaN的区别

    JS 数据类型 在介绍这三个之间的差别之前, 先来看一下JS  的数据类型. 在 Java ,C这样的语言中, 使用一个变量之前,需要先定义这个变量并指定它的数据类型,是整型,字符串型,.... 但是 ...

  8. (转载)Javascript 中的非空判断 undefined,null, NaN的区别

    原文地址:https://blog.csdn.net/oscar999/article/details/9353713 在介绍这三个之间的差别之前, 先来看一下JS  的数据类型. 在 Java ,C ...

  9. Spark提高篇——RDD/DataSet/DataFrame(一)

    该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD ...

随机推荐

  1. 浅谈Java并发编程系列(八)—— LockSupport原理剖析

    LockSupport 用法简介 LockSupport 和 CAS 是Java并发包中很多并发工具控制机制的基础,它们底层其实都是依赖Unsafe实现. LockSupport是用来创建锁和其他同步 ...

  2. cmake - 编译

    cmake在编译期间会使用到的命令总结: 1.指定编译器并同时设置编译选项 set(CMAKE_CXX_COMPILER "clang++" ) # 显示指定使用的C++编译器 s ...

  3. java的多线程:java安全问题产生的原因与JMM的关系

    一.多线程产生安全问题 1.Java内存模型 共享内存模型指的就是Java内存模型(简称JMM),JMM决定一个线程对共享变量的写入时,能对另一个线程可见. 从抽象的角度来看,JMM定义了线程和主内存 ...

  4. Study_way

    一.Study 学习通Java基础视频.语法 开源中国 (Git)版本控制 读懂程序.源代码 相关资源 百度网盘 程序:方法(数学) 二.参数传递 基本数据的传参:虚参改变影响实参 引用数据的传参:数 ...

  5. Appium 介绍及环境安装

    Appium是一个可用于测试iOS. Android操作系统和Windows桌面平台原生应用,移动网页应用和混合应用的自动化测试框架. 原生应用(Native App):用 android.iOS或者 ...

  6. .netcore 急速接入第三方登录,不看后悔

    新年新气象,趁着新年的喜庆,肝了十来天,终于发了第一版,希望大家喜欢. 如果有不喜欢看文字的童鞋,可以直接看下面的地址体验一下: https://oauthlogin.net/ 前言 此次带来得这个小 ...

  7. 【MYSQL】win7安装mysql-5.7.10绿色版

    1.下载 :mysql下载地址 2.解压缩 3.环境变量配置 MYSQL_HOME=D:\mysql-5.7.11-win32 PATH=%MYSQL_HOME%\bin 4.修改配置文件 a.)将m ...

  8. [Usaco2002 Feb]Rebuilding Roads重建道路

    题目描述 一场可怕的地震后,奶牛用N个牲口棚(1 <= N <= 150,编号1..N)重建了农民John的牧场.奶牛没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是唯一 ...

  9. Redis 实战 —— 03. Redis 简单实践 - Web应用

    需求 功能: P23 登录 cookie 购物车 cookie 缓存生成的网页 缓存数据库行 分析网页访问记录 高层次角度下的 Web 应用 P23 从高层次的角度来看, Web 应用就是通过 HTT ...

  10. 阅读lodash源码之旅数组方法篇-compact和concat

    鲁迅说过:只有阅读过优秀库源码的人,才能配的上是真正的勇士. compact 创建一个新数组,包含原数组中所有的非假值元素.例如false, null,0, "", undefin ...