LINK:XOR

一个不常见的容斥套路题。

以往是只求三角形面积的交 现在需要求被奇数次覆盖的区域的面积。

打住 求三角形面积的交我也不会写 不过这道题的三角形非常特殊 等腰直角 且直角点都在左下方 这就有很多的性质了。

容易发现最后交出的三角形为等腰直角三角形。

考虑如何求若干个三角形交出的面积 不太会证明 题解区的一个神仙给出了一个式子。

设 \(c_i=x_i+y_i+z_i\)最终交出的三角形的直角边边长为 \(MAX(0,min(c_i)-max(x_i)-max(y_i))\)

数据范围这么小 显然可以子集容斥 不过对于枚举到的三角形 需要配上一定的容斥系数满足 偶消奇不消。

对于一个集合s来说 容斥系数为\(2^{|S|-1}(-1)^{|S|-1}\)

怎么说 这是 对于这种容斥的常用套路(系数。

证明:\(\sum_{k=1}^nC(n,k)2^{k-1}(-1)^{k-1}=[![2|n]]\)

\(\sum_{k=1}^nC(n,k)(-2)^{k-1}=\frac{\sum_{k=1}^nC(n,k)(-2)^{k}}{-2}=\frac{-1+\sum_{k=0}^nC(n,k)(-2)^{k}}{-2}\)

二项式定理合并起来 可得\(\frac{1-(-2+1)^n}{2}=\frac{1-(-1)^n}{2}=[![2|n]]\)

const int MAXN=12;
int n;
struct wy
{
int x,y,r,w;
}t[MAXN];
db ans;
inline void dfs(int v,int sz,int z,int x,int y,int op)
{
if(v==n+1)
{
if(!sz)return;
ans=ans+(1ll<<sz-1)*op*((z-x-y)<0?0:(ll)(z-x-y)*(z-x-y));
return;
}
dfs(v+1,sz+1,min(z,t[v].w),max(x,t[v].x),max(y,t[v].y),-op);
dfs(v+1,sz,z,x,y,op);
}
int main()
{
freopen("1.in","r",stdin);
get(n);
rep(1,n,i)
{
int x,y,z;
get(x);get(y);get(z);
t[i]=(wy){x,y,z};
t[i].w=x+y+z;
}
dfs(1,0,INF,0,0,-1);
printf("%.1lf",ans/2);
return 0;
}

luogu P4515 [COCI2009-2010#6] XOR 容斥的更多相关文章

  1. Luogu P4707 重返现世 (拓展Min-Max容斥、DP)

    题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...

  2. [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)

    [luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...

  3. 【Luogu】P2567幸运数字(容斥爆搜)

    题目链接 先预处理出幸运数,把成倍数关系的剔掉,然后用容斥原理搜索一下. 这里的容斥很像小学学的那个“班上有n个同学,有a个同学喜欢数学,b个同学喜欢语文……”那样. #include<cstd ...

  4. bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演

    题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/ ...

  5. luogu 5505 [JSOI2011]分特产 广义容斥

    共有 $m$ 种物品,每个物品 $a[i]$ 个,分给 $n$ 个人,每个人至少要拿到一件,求方案数. 令 $f[i]$ 表示钦定 $i$ 个没分到特产,其余 $(n-i)$ 个人随便选的方案数,$g ...

  6. luogu P4515 [COCI2009-2010#6] XOR

    luogu P4515 [COCI2009-2010#6] XOR 描述 坐标系下有若干个等腰直角三角形,且每个等腰直角三角形的直角顶点都在左下方,两腰与坐标轴平行.被奇数个三角形覆盖的面 积部分为灰 ...

  7. [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥

    题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...

  8. Luogu P2567 [SCOI2010]幸运数字 容斥+脑子

    双倍经验:BZOJ 2393 Cirno的完美算数教室 做法:先把$[1,r]$中所有的幸运数字筛出来,然后用这些幸运数字来筛$[l,r]$中的近似幸运号码: 剪枝:当一个幸运数字$a[i]$是另一个 ...

  9. 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥

    同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...

随机推荐

  1. 很实用的h5实现名片扫描识功能快速结合市场运营

    功能描述: 点击名片识别按钮,将名片上的个人信息扫描并解析出来显示. 实现步骤: 1.点击第一个页面上的名片识别按钮,调出手机摄像头和相册,让用户进行选择 2.获取照片或者图片的base64数据,传值 ...

  2. 小烈送菜——奇怪的dp

    小烈送菜 题目描述 小烈一下碰碰车就被乐满地的工作人员抓住了.作为扰乱秩序的惩罚,小烈必须去乐满地里的"漓江村"饭店端盘子. 服务员的工作很繁忙.他们要上菜,同时要使顾客们尽量高兴 ...

  3. ICPC 2018 亚洲横滨赛 C Emergency Evacuation(暴力,贪心)

    ICPC 2018 亚洲横滨赛 C Emergency Evacuation 题目大意 你一个车厢和一些人,这些人都坐在座位上,求这些人全部出去的时间最小值 Solution 题目咋说就咋做 直接模拟 ...

  4. MongoDB 逻辑还原工具mongorestore

    mongorestore是官方提供用来还原导入由mongodump导出生成的二进制备份文件的工具,通常与mongodump配合使用,关于mongodump工具的使用可以参考另一篇博文:MongoDB ...

  5. sql语句-如何在SQL以一个表中的数据为条件据查询另一个表中的数据

    select *from 表2where 姓名 in (select 姓名from 表1where 条件) 这个就是用一个表的查询结果当作条件去查询另一个表的数据

  6. __stdcall、__cdcel和__fastcall三者的区别

    转自:https://www.cnblogs.com/huhewei/p/6080143.html 一.概述 __stdcall.__cdecl和__fastcall是三种函数调用协议,函数调用协议会 ...

  7. 记一道CTF隐写题解答过程

      0x00 前言 由于我是这几天才开始接触隐写这种东西,所以作为新手我想记录一下刚刚所学.这道CTF所需的知识点包括了图片的内容隐藏,mp3隐写,base64解密,当铺解密,可能用到的工具包括bin ...

  8. Python预测2020高考分数和录取情况可能是这样

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:打磨虾 “迟到”了一个月的高考终于要来了. 正好我得到了一份山东新高 ...

  9. 一个简单的webAPI调用

    1.新建一个ASP.NET Web应用程序. 2.选择空模板,WebAPI. 3.在Models文件夹添加Product类. 4.添加空控制器ProductController. 5.ProductC ...

  10. day81 初识drf

    目录 一.web应用模式 二.API接口 1 rpc(远程过程调用/远程服务调用) 2 restful(资源状态转换) 三.RESTful API规范 四.序列化 五.Django Rest_Fram ...