• 题意:给你一组数\(a\),构造一个它的子序列\(b\),然后再求\(b_1-b2+b3-b4...\),问构造后的结果最大是多少.

  • 题解:线性DP.我们用\(dp1[i]\)来表示在\(i\)位置,并且此时子序列的长度是奇数的情况,而\(dp2\)则是偶数情况,对于每个\(a_i\),\(dp[i]\)都可以选它或者不选,拿\(dp1[i]\)举例,如果选择\(a_i\),那么状态则可以从子序列中上一个位置转移过来,所以\(dp1[i]=dp2[i-1]+a[i]\),如果不选就是\(dp1[i]=dp1[i-1]\),二者维护一个最大值即可,对于\(dp2\)来说也是一样.

  • 代码:

    int t;
    int n,q;
    int a[N];
    ll dp1[N],dp2[N]; int main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin>>t;
    while(t--){
    cin>>n>>q;
    for(int i=1;i<=n;++i){
    cin>>a[i];
    }
    for(int i=1;i<=n;++i){
    dp1[i]=max(dp1[i-1],dp2[i-1]+a[i]);
    dp2[i]=max(dp2[i-1],dp1[i-1]-a[i]);
    }
    cout<<max(dp1[n],dp2[n])<<endl;
    } return 0;
    }

Codeforces Round #672 (Div. 2) C1. Pokémon Army (easy version) (DP)的更多相关文章

  1. Codeforces Round #658 (Div. 2) C1. Prefix Flip (Easy Version) (构造)

    题意:给你两个长度为\(n\)的01串\(s\)和\(t\),可以选择\(s\)的前几位,取反然后反转,保证\(s\)总能通过不超过\(3n\)的操作得到\(t\),输出变换总数,和每次变换的位置. ...

  2. C1. Pokémon Army (easy version) 解析(DP)

    Codeforce 1420 C1. Pokémon Army (easy version) 解析(DP) 今天我們來看看CF1420C1 題目連結 題目 對於一個數列\(a\),選若干個數字,求al ...

  3. Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】

    任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...

  4. Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)

    https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...

  5. Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version)

    This problem is different from the hard version. In this version Ujan makes exactly one exchange. Yo ...

  6. Codeforces Round #599 (Div. 2) B1. Character Swap (Easy Version) 水题

    B1. Character Swap (Easy Version) This problem is different from the hard version. In this version U ...

  7. Codeforces Round #653 (Div. 3) E1. Reading Books (easy version) (贪心,模拟)

    题意:有\(n\)本书,A和B都至少要从喜欢的书里面读\(k\)本书,如果一本书两人都喜欢的话,那么他们就可以一起读来节省时间,问最少多长时间两人都能够读完\(k\)本书. 题解:我们可以分\(3\) ...

  8. Codeforces Round #650 (Div. 3) F1. Flying Sort (Easy Version) (离散化,贪心)

    题意:有一组数,每次操作可以将某个数移到头部或者尾部,问最少操作多少次使得这组数非递减. 题解:先离散化将每个数映射为排序后所对应的位置,然后贪心,求最长连续子序列的长度,那么最少的操作次数一定为\( ...

  9. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

随机推荐

  1. 【Git】5、Git如何提交代码到远程仓库

    提交代码:如何把修改后的代码提交到远程仓库 文章目录 提交代码:如何把修改后的代码提交到远程仓库 1.同步远程代码 2.检查改动文件 3.添加文件到缓存 4.提交代码 5.推送代码 6.我的整个流程 ...

  2. 学习rac管理

    文章转自:http://blog.itpub.net/7728585/viewspace-752185/ crsctl query crs activeversion 查看版本 ocrconfig - ...

  3. 【Linux】常用的Linux可插拔认证模块(PAM)应用举例:pam_limits.so、pam_rootok.so和pam_userdb.so模块

    常用的Linux可插拔认证模块(PAM)应用举例:pam_limits.so.pam_rootok.so和pam_userdb.so模块 pam_limits.so模块: pam_limits.so模 ...

  4. Java反射全解析(使用、原理、问题、在Android中的应用)

    前言 今天说Java模块内容:反射. 反射介绍 正常情况下,我们知晓我们要操作的类和对象是什么,可以直接操作这些对象中的变量和方法,比如一个User类: User user=new User(); u ...

  5. django使用缓存之drf-extensions

    使用方法:1.直接添加装饰器@cache_response该装饰器装饰的方法有两个要求: 它必须是继承了rest_framework.views.APIView的类的方法 它必须返回rest_fram ...

  6. [系列] Go - 基于 GORM 获取当前请求所执行的 SQL 信息

    前言 为了便于精准排查问题,需要将当前的请求信息与当前执行的 SQL 信息设置对应关系记录下来,记录的 SQL 信息包括: 执行 SQL 的当前时间: 执行 SQL 的文件地址和行号: 执行 SQL ...

  7. 图解 | 原来这就是TCP

    你是一台电脑,你的名字叫 A 经过<图解 | 原来这就是网络>这篇文章中的一番折腾,只要你知道另一位伙伴 B 的 IP 地址,且你们之间的网络是通的,无论多远,你都可以将一个数据包发送给你 ...

  8. Django--虛擬環境Virtualenv的安裝使用

    Django--虛擬環境Virtualenv的安裝使用 本次隨筆只要記錄在windows下安裝virtualenvwrapper,以及簡單的使用命令. virtualenvwrapper的安裝     ...

  9. JVM调优 jdk版本 机器配置 建议jvm参数 备注

    https://juejin.im/post/5b091ee35188253892389683 大型跨境电商JVM调优经历 前提:某大型跨境电商业务发展非常快,线上机器扩容也很频繁,但是对于线上机器的 ...

  10. .axios的特点有哪些

    从浏览器中创建XMLHttpRequests:node.js创建http请求:支持Promise API:拦截请求和响应:转换请求数据和响应数据:取消请求:自动换成json.axios中的发送字段的参 ...