Problem Description
Teacher Mai is in a maze with n rows
and m columns.
There is a non-negative number in each cell. Teacher Mai wants to walk from the top left corner (1,1) to
the bottom right corner (n,m).
He can choose one direction and walk to this adjacent cell. However, he can't go out of the maze, and he can't visit a cell more than once.

Teacher Mai wants to maximize the sum of numbers in his path. And you need to print this path.
 

Input
There are multiple test cases.

For each test case, the first line contains two numbers n,m(1≤n,m≤100,n∗m≥2).

In following n lines,
each line contains m numbers.
The j-th
number in the i-th
line means the number in the cell (i,j).
Every number in the cell is not more than 104.
 

Output
For each test case, in the first line, you should print the maximum sum.

In the next line you should print a string consisting of "L","R","U" and "D", which represents the path you find. If you are in the cell (x,y),
"L" means you walk to cell (x,y−1),
"R" means you walk to cell (x,y+1),
"U" means you walk to cell (x−1,y),
"D" means you walk to cell (x+1,y).
 

Sample Input

3 3
2 3 3
3 3 3
3 3 2
 

Sample Output

25
RRDLLDRR

第一想法是搜多,但看到100*100的大小,感觉不是搜索题,后来发现是模拟题。如果n或m有一个是奇数,那么一定可以把所有的点都走一遍,这样结果一定是最大的,所以只要考虑都是偶数的情况。我的思路是先把横纵坐标只和为奇数的染成黑色,偶数的染成白色,那么画图可以知道

如果选择一个黑色方格不走,那么其他点都能够走一遍,但如果选择一个白色方格不走,必须要不走另外两个黑色方格才能走到终点,所以 一定是选择最小的黑色方格数不走。

然后选出最小的黑色方格,然后模拟一下走法就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define inf 99999999
int gra[106][106],n,m,sum;
void jishulu()
{
int i,j;
printf("%d\n",sum);
if(n%2==1){
for(i=1;i<=n;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'R':'L');
}
if(i<n)printf("D");
else printf("\n");
}
}
else{
for(j=1;j<=m;j++){
for(i=1;i<=n-1;i++){
printf("%c",j%2==1?'D':'U');
}
if(j<m)printf("R");
else printf("\n");
}
}
} void oushulu()
{
int i,j,minx=inf,dx=0,dy=0,x,y;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
if((i+j)%2==1 && minx>gra[i][j]){
dx=i;dy=j;minx=gra[i][j];
}
}
}
printf("%d\n",sum-minx);
if(dx==n){
for(i=1;i<=n-2;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'R':'L');
}
printf("D");
}
if(dy==1){
x=n-1;y=1;
while(1)
{
printf("RD");x++;y++;
if(x==n && y==m){
printf("\n");break;
}
printf("RU");x--;y++;
}
}
else{
printf("D");
x=n;y=1;
while(1)
{
printf("RU");
x--;y++;
if(x+1==dx && y+1==dy){
printf("RRD");x++;y+=2;
}
else{
printf("RD");x++;y++;
}
if(x==n && y==m){
printf("\n");break;
}
}
}
}
else if(dx!=n){
for(i=1;i<=dx-1;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'R':'L');
}
printf("D");
}
if(dx%2==1){
printf("D");
x=dx+1;y=1;
if(dy==m){
while(1)
{
if((y+1)!=m){
printf("RURD");y+=2;
}
else{
printf("R");y++;
if(x!=n)printf("D");break;
}
}
}
else{
while(1)
{
if(x-1==dx && y+1==dy){
printf("RRURD");y+=3;
}
else{
printf("RURD");y+=2;
}
if(y==m){
if(x!=n)printf("D");
break;
}
}
}
for(i=dx+2;i<=n;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'L':'R');
}
if(i!=n)printf("D");
}
printf("\n"); }
else if(dx%2==0){
printf("D");
x=dx+1;y=m;
if(dy==1){
while(1)
{
if((y-1)!=1){
printf("LULD");y-=2;
}
else{
printf("L");y--;
if(x!=n)printf("D");
break;
}
}
}
else{
while(1)
{
if(x-1==dx && y-1==dy){
printf("LLULD");y-=3;
}
else{
printf("LULD");y-=2;
}
if(y==1){
if(x!=n)printf("D");
break;
}
}
}
if(x!=n){
for(i=dx+2;i<=n;i++){
for(j=1;j<=m-1;j++){
printf("%c",i%2==1?'L':'R');
}
if(i!=n)
printf("D");
}
}
printf("\n"); }
}
} int main()
{
int i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
sum=0;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%d",&gra[i][j]);
sum+=gra[i][j];
}
}
if(n%2==1 || m%2==1){
jishulu();
}
else oushulu();
}
return 0;
}

hdu5402 Travelling Salesman Problem的更多相关文章

  1. [hdu5402 Travelling Salesman Problem]YY

    题意:给一个n*m的矩形,每个格子有一个非负数,求一条从(1,1)到(n,m)的路径(不能经过重复的格子),使得经过的数的和最大,输出具体的方案 思路:对于row为奇数的情况,一行行扫下来即可全部走完 ...

  2. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  4. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  5. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  6. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  7. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  8. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  9. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

随机推荐

  1. C++ 异常机制(上)

    目录 一.概念 二.异常的好处 三.基本语法 四.栈解旋 五.异常接口声明 六.异常对象的内存模型 七.异常对象的生命周期 一.概念 异常:存在于运行时的反常行为,这些行为超过了函数的正常的功能范围. ...

  2. Spring MVC 接收 LocalDate、LocalTime 和 LocalDateTime Java 8 时间类型参数

    使用 Spring MVC 时,很多业务场景下 Controller 需要接收日期时间参数.一个简单的做法是使用 String 接收日期时间字符串(例如:2020-01-29),然后在代码中将其转换成 ...

  3. 【MySQL】SELECT语句 - 查询数据

    第4章 检索数据 文章目录 第4章 检索数据 1.SELECT语句 2.检索单个列 3.检索多个列 4.检索所有列 5.检索不同的行 6.限制结果 7.使用完全限定的表名 8.小结 简单记录 - My ...

  4. 【IMPDP】ORA-31655

    出现ora-31655错误的情况是因为不是同一个schema,导致的问题产生 解决的方法; 在导入语句最后添加上remap_schema=old:new 着old是原schema,也就是导出的用户名, ...

  5. oracle rac搭建单实例DG步骤(阅读全篇后再做)

    环境介绍 主库: 主机名 rac01 rac02 实体IP 10.206.132.232 10.206.132.233 私有IP 192.168.56.12 192.168.56.13 虚拟IP 10 ...

  6. PHP设计模式之装饰器模式(Decorator)

    PHP设计模式之装饰器模式(Decorator) 装饰器模式 装饰器模式允许我们给一个类添加新的功能,而不改变其原有的结构.这种类型的类属于结构类,它是作为现有的类的一个包装 装饰器模式的应用场景 当 ...

  7. 宝塔的url计划任务

    to通过url访问 就像访问你的网站一样 然后控制器/方法里面写你要做的操作 就可以了 ,简单的一批

  8. 【Redis系列】Spring boot实现监听Redis key失效事件

    talk is cheap, show me the code. 一.开启Redis key过期提醒 方式二:修改配置文件 redis.conf # 默认 notify-keyspace-events ...

  9. E2.在shell中正确退出当前表达式

    E2.在shell中正确退出当前表达式 优雅退出当前表达式 在shell里面输出复杂的多行表达时,经常由于少输入一个引号,一直无法退出当前的表达式求值,也没有办法终止它,以前只能通过两次Ctrl+C结 ...

  10. slice 切片实现 Slice object interface

    1.Python切片对象可以为任意类型 https://github.com/python/cpython/blob/master/Include/sliceobject.h /* Slice obj ...