毫不留情地揭开 ArrayList 和 LinkedList 之间的神秘面纱
先看再点赞,给自己一点思考的时间,思考过后请毫不犹豫微信搜索【沉默王二】,关注这个靠才华苟且的程序员。
本文 GitHub github.com/itwanger 已收录,里面还有技术大佬整理的面试题,以及二哥的系列文章。
ArrayList 和 LinkedList 是 List 接口的两种不同实现,并且两者都不是线程安全的。但初学者往往搞不清楚它们两者之间的区别,不知道什么时候该用 ArrayList,什么时候该用 LinkedList,那这篇文章就来传道受业解惑一下。

ArrayList 内部使用的动态数组来存储元素,LinkedList 内部使用的双向链表来存储元素,这也是 ArrayList 和 LinkedList 最本质的区别。
注:本文使用的 JDK 源码版本为 14,小伙伴如果发现文章中的源码和自己本地的不同时,不要担心,不是我源码贴错了,也不是你本地的源码错了,只是版本不同而已。
由于 ArrayList 和 LinkedList 内部使用的存储方式不同,导致它们的各种方法具有不同的时间复杂度。先来通过维基百科理解一下时间复杂度这个概念。
在计算机科学中,算法的时间复杂度(Time complexity)是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大 O 符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。例如,如果一个算法对于任何大小为 n (必须比 n0 大)的输入,它至多需要 5n3+3n 的时间运行完毕,那么它的渐近时间复杂度是 O(n3)。
对于 ArrayList 来说:
1)get(int index) 方法的时间复杂度为 O(1),因为是直接从底层数组根据下标获取的,和数组长度无关。
public E get(int index) {
Objects.checkIndex(index, size);
return elementData(index);
}
这也是 ArrayList 的最大优点。
2)add(E e) 方法会默认将元素添加到数组末尾,但需要考虑到数组扩容的情况,如果不需要扩容,时间复杂度为 O(1)。
public boolean add(E e) {
modCount++;
add(e, elementData, size);
return true;
}
private void add(E e, Object[] elementData, int s) {
if (s == elementData.length)
elementData = grow();
elementData[s] = e;
size = s + 1;
}
如果需要扩容的话,并且不是第一次(oldCapacity > 0)扩容的时候,内部执行的 Arrays.copyOf() 方法是耗时的关键,需要把原有数组中的元素复制到扩容后的新数组当中。
private Object[] grow(int minCapacity) {
int oldCapacity = elementData.length;
if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
int newCapacity = ArraysSupport.newLength(oldCapacity,
minCapacity - oldCapacity, /* minimum growth */
oldCapacity >> 1 /* preferred growth */);
return elementData = Arrays.copyOf(elementData, newCapacity);
} else {
return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
}
}
3)add(int index, E element) 方法将新的元素插入到指定的位置,考虑到需要复制底层数组(根据之前的判断,扩容的话,数组可能要复制一次),根据最坏的打算(不管需要不需要扩容,System.arraycopy() 肯定要执行),所以时间复杂度为 O(n)。
public void add(int index, E element) {
rangeCheckForAdd(index);
modCount++;
final int s;
Object[] elementData;
if ((s = size) == (elementData = this.elementData).length)
elementData = grow();
System.arraycopy(elementData, index,
elementData, index + 1,
s - index);
elementData[index] = element;
size = s + 1;
}
来执行以下代码,把沉默王八插入到下标为 2 的位置上。
ArrayList<String> list = new ArrayList<>();
list.add("沉默王二");
list.add("沉默王三");
list.add("沉默王四");
list.add("沉默王五");
list.add("沉默王六");
list.add("沉默王七");
list.add(2, "沉默王八");
System.arraycopy() 执行完成后,下标为 2 的元素为沉默王四,这一点需要注意。也就是说,在数组中插入元素的时候,会把插入位置以后的元素依次往后复制,所以下标为 2 和下标为 3 的元素都为沉默王四。

之后再通过 elementData[index] = element 将下标为 2 的元素赋值为沉默王八;随后执行 size = s + 1,数组的长度变为 7。

4)remove(int index) 方法将指定位置上的元素删除,考虑到需要复制底层数组,所以时间复杂度为 O(n)。
public E remove(int index) {
Objects.checkIndex(index, size);
final Object[] es = elementData;
@SuppressWarnings("unchecked") E oldValue = (E) es[index];
fastRemove(es, index);
return oldValue;
}
private void fastRemove(Object[] es, int i) {
modCount++;
final int newSize;
if ((newSize = size - 1) > i)
System.arraycopy(es, i + 1, es, i, newSize - i);
es[size = newSize] = null;
}
对于 LinkedList 来说:
1)get(int index) 方法的时间复杂度为 O(n),因为需要循环遍历整个链表。
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
LinkedList.Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
LinkedList.Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
LinkedList.Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
下标小于链表长度的一半时,从前往后遍历;否则从后往前遍历,这样从理论上说,就节省了一半的时间。
如果下标为 0 或者 list.size() - 1 的话,时间复杂度为 O(1)。这种情况下,可以使用 getFirst() 和 getLast() 方法。
public E getFirst() {
final LinkedList.Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
public E getLast() {
final LinkedList.Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
first 和 last 在链表中是直接存储的,所以时间复杂度为 O(1)。
2)add(E e) 方法默认将元素添加到链表末尾,所以时间复杂度为 O(1)。
public boolean add(E e) {
linkLast(e);
return true;
}
void linkLast(E e) {
final LinkedList.Node<E> l = last;
final LinkedList.Node<E> newNode = new LinkedList.Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
3)add(int index, E element) 方法将新的元素插入到指定的位置,需要先通过遍历查找这个元素,然后再进行插入,所以时间复杂度为 O(n)。
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
如果下标为 0 或者 list.size() - 1 的话,时间复杂度为 O(1)。这种情况下,可以使用 addFirst() 和 addLast() 方法。
public void addFirst(E e) {
linkFirst(e);
}
private void linkFirst(E e) {
final LinkedList.Node<E> f = first;
final LinkedList.Node<E> newNode = new LinkedList.Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
linkFirst() 只需要对 first 进行更新即可。
public void addLast(E e) {
linkLast(e);
}
void linkLast(E e) {
final LinkedList.Node<E> l = last;
final LinkedList.Node<E> newNode = new LinkedList.Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
linkLast() 只需要对 last 进行更新即可。
需要注意的是,有些文章里面说,LinkedList 插入元素的时间复杂度近似 O(1),其实是有问题的,因为 add(int index, E element) 方法在插入元素的时候会调用 node(index) 查找元素,该方法之前我们之间已经确认过了,时间复杂度为 O(n),即便随后调用 linkBefore() 方法进行插入的时间复杂度为 O(1),总体上的时间复杂度仍然为 O(n) 才对。
void linkBefore(E e, LinkedList.Node<E> succ) {
// assert succ != null;
final LinkedList.Node<E> pred = succ.prev;
final LinkedList.Node<E> newNode = new LinkedList.Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
4)remove(int index) 方法将指定位置上的元素删除,考虑到需要调用 node(index) 方法查找元素,所以时间复杂度为 O(n)。
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
E unlink(LinkedList.Node<E> x) {
// assert x != null;
final E element = x.item;
final LinkedList.Node<E> next = x.next;
final LinkedList.Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
通过时间复杂度的比较,以及源码的分析,我相信小伙伴们在选择的时候就有了主意,对吧?
需要注意的是,如果列表很大很大,ArrayList 和 LinkedList 在内存的使用上也有所不同。LinkedList 的每个元素都有更多开销,因为要存储上一个和下一个元素的地址。ArrayList 没有这样的开销。
但是,ArrayList 占用的内存在声明的时候就已经确定了(默认大小为 10),不管实际上是否添加了元素,因为复杂对象的数组会通过 null 来填充。LinkedList 在声明的时候不需要指定大小,元素增加或者删除时大小随之改变。
另外,ArrayList 只能用作列表;LinkedList 可以用作列表或者队列,因为它还实现了 Deque 接口。
我在写这篇文章的时候,遇到了一些问题,所以请教了一些大厂的技术大佬,结果有个朋友说,“如果真的不知道该用 ArrayList 还是 LinkedList,就选择 ArrayList 吧!”
我当时以为他在和我开玩笑呢,结果通过时间复杂度的分析,好像他说得有道理啊。查询的时候,ArrayList 比 LinkedList 快,这是毋庸置疑的;插入和删除的时候,之前有很多资料说 LinkedList 更快,时间复杂度为 O(1),但其实不是的,因为要遍历列表,对吧?
反而 ArrayList 更轻量级,不需要在每个元素上维护上一个和下一个元素的地址。

我这样的结论可能和大多数文章得出的结论不符,那么我想,选择权交给小伙伴们,你们在使用的过程中认真地思考一下,并且我希望你们把自己的思考在留言区放出来。
我是沉默王二,一枚有颜值却靠才华苟且的程序员。关注即可提升学习效率,别忘了三连啊,点赞、收藏、留言,我不挑,奥利给。
注:如果文章有任何问题,欢迎毫不留情地指正。
如果你觉得文章对你有些帮助欢迎微信搜索「沉默王二」第一时间阅读,回复「小白」更有我肝了 4 万+字的 Java 小白手册 2.0 版,本文 GitHub github.com/itwanger 已收录,欢迎 star。
毫不留情地揭开 ArrayList 和 LinkedList 之间的神秘面纱的更多相关文章
- 揭开自然拼读法(Phonics)的神秘面纱
揭开自然拼读法(Phonics)的神秘面纱 自然拼读法 (Phonics),是指看到一个单词,就可以根据英文字母在单词里的发音规律把这个单词读出来的一种方法.即从“字母发音-字母组合发音-单词-简单 ...
- 揭开GrowingIO无埋点的神秘面纱
揭开GrowingIO无埋点的神秘面纱 早在研究用户行为分析的时候,就发现国内的GrowingIO在宣传无埋点技术,最近正好抽出时间来研究一下所谓的无埋点到底是什么样的. 我分六部分来分析一下无埋 ...
- 集合篇-----ArrayList与LinkedList之间的那些小事
各自特性: ArrayList : 是一由连续的内存块组成的数组,范围大小可变的,当不够时增加为原来1.5倍大小,数组. :调用trimToSize方法,使得存储区域的大小调整为当前元素数量所需要的 ...
- 揭开js之constructor属性的神秘面纱
揭开 constructor 在 Javascript 语言中,constructor 属性是专门为 function 而设计的,它存在于每一个 function 的prototype 属性中.这个 ...
- 通过一个生活中的案例场景,揭开并发包底层AQS的神秘面纱
本文导读 生活中案例场景介绍 联想到 AQS 到底是什么 AQS 的设计初衷 揭秘 AQS 底层实现 最后的总结 当你在学习某一个技能的时候,是否曾有过这样的感觉,就是同一个技能点学完了之后,过了一段 ...
- 揭开C++类中虚表的“神秘面纱”
C++类中的虚表结构是C++对象模型中一个重要的知识点,这里咱们就来深入分析下虚表的在内存中的结构. C++一个类中有虚函数的话就会有一个虚表指针,其指向对应的虚表,一般一个类只会有一个虚表,每个虚表 ...
- ArrayList,LinkedList,Vector,Stack之间的区别
一,线程安全性 Vector.Stack:线程安全 ArrayList.LinkedList:非线程安全 二,实现方式 LinkedList:双向链表 ArrayList,Vector,Stack:数 ...
- java中集合类HashSet、ArrayList、LinkedList总结
[HashSet] 1. HashSet存储不能够存储相同的元素,元素是否相同的判断:重写元素的equals方法.equals方法和hashCode方法必须兼容,如:equals方法判断的是用户的名字 ...
- ArrayList和LinkedList内部是怎么实现的?他们之间的区别和优缺点?
ArrayList 内部使用了数组形式进行了存储,利用数组的下标进行元素的访问,因此对元素的随机访问速度非常快.因为是数组,所以ArrayList在初始化的时候, 有初始大小10,插入新元素的时候,会 ...
随机推荐
- java 虚拟机指令重新排序
指令重排序是JVM为了优化指令,提高程序运行效率,在不影响单线程程序执行结果的前提下,尽可能地提高并行度.编译器.处理器也遵循这样一个目标.注意是单线程.多线程的情况下指令重排序就会给程序员带来问题. ...
- 信息收集-DNS
首先更正一个小白很普遍的错误观点,www.baidu.com(严格上是www.baidu.com. 这个点是根的意思,所有的记录从这里开始)并不是一个真正意义上的域名,而是百度服务器的A记录,baid ...
- 小师妹学JVM之:java的字节码byte code简介
目录 简介 Byte Code的作用 查看Byte Code字节码 java Byte Code是怎么工作的 总结 简介 Byte Code也叫做字节码,是连接java源代码和JVM的桥梁,源代码编译 ...
- 学习oracle的SQL语句 练习
--1.查询emp表,显示薪水大于2000,且工作类别是MANAGER的雇员信息 select * from emp where sal > 2000and job = 'MANAGER'; - ...
- github知名企业开源项目索引
亚马逊:https://github.com/amzn 饿了么 https://github.com/ElemeFEhttp://lrd.ele.me/腾讯 https://github.com/Te ...
- CodeForces 3 D.Least Cost Bracket Sequence【贪心+优先队列】
Description 给出一个括号序列,中间有一些问号,将第i个问号换成左括号代价是a[i],换成右括号代价是b[i],问如果用最少的代价将这个括号序列变成一个合法的括号序列 Input 第一行一个 ...
- VSCode 使用 Settings Sync 同步配置和插件
简要说明: Settings Sync插件可以在不同的计算机同步VSCode配置和插件. 安装和配置 在VSCode的插件栏搜索settings sync并安装.在安装完成之后如果需要重新载入就点击重 ...
- web开发相关概念
什么是web通信? WEB采用B/S通信模式,通过超文本传送协议(HTTP, Hypertext transport protocol)进行通信.通过浏览器地址栏编写URL,向服务器发送一个请求,服务 ...
- 如何使用SVG及其动画技术为你的 Web 前端开发带来一些新鲜的体验
任何有开发经验的前端工程师都会考虑到不成体系的设备生态所带来的挑战.设备间不同的屏幕尺寸.分辨率和比例使得产品难以提供一致的体验,对于那些对产品有着像素级完美追求的人这种体验差异尤其显著! SVG(可 ...
- 我打算用JAVA实现GB/T32960 监控平台的tcp server
之前是用golang写得 ,因为对golang不是很熟练,打算基于netty再写一个,开源出来. 如果近期时间宽裕,就准备着手了. 有兴趣的朋友也可以留言一起做.