2.kafka架构深入——生产者
一个topic有多个partition,每个partition又有多个副本,在这些副本中又有一个leader和多个follower。
1)分区的原因
(1)方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
(2)可以提高并发,因为可以以Partition为单位读写了。
2)分区的原则
我们需要将producer发送的数据封装成一个ProducerRecord对象。
(1)指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
(2)没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
(3)既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。
生产者发送到topic的数据可靠性保证
为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。
设想这样一种场景:
Producer向partition中的leader发送消息,在leader收到消息后,向Producer发送ack表示已经收到消息。然后leader开始准备向同一个partition中的其他的follower同步消息,假如这个时候leader突然挂掉,那么集群中开始选举其他的follower成为leader,其他的follower成为leader之后,内部并没有刚刚发来的那条消息,而producer已经收到了之前leader发来的ack,也不会发送这条消息了,这就造成了消息漏消费的情况,那如何解决这个问题呢?很简单,等leader给follower同步消息之后再给Producer发送ack确认通知就可以了,那么就产生一个问题:同步到什么地步或者说同步几台follower之后发送ack?
多少个folower同步完成之后发送ask?有两个方案:
第一个方案:半数以上的follower同步完成,即可发送ack
第二个方案:不用选举,全部的follower同步完成,才可以发送ack
1、为什么要获取半数以上的投票才能成为新的leader?
防止脑裂。半数以上的话只能有一个
2、参与投票的至少几个?
半数以上
3、如何才能确保一定能够选出一个合格的leader
半数以上的同步完成。
9个副本,有5个同步完成的,如果挂掉4个节点,根据2中可知:参与投票的至少是5个,里面至少会有一个同步完成的,(选举的规则是选举同步完成的),那肯定可以保证选举成功。
所以说第一个方案:半数以上的follower同步完成,即可发送ack
第一种方案:优点:延迟低
缺点:选举新的leader时,容忍n台节点的故障,需要2n+1个副本。(如果集群有2n+1台机器,选举leader的时候至少需要半数以上即n+1台机器投票,那么能容忍的故障,最多就是n台机器发生故障)容错率:1/2
第二种方案:优点:选举新的leader时,容忍n台节点的故障,需要n+1个副本。(如果集群有n+1台机器,选举leader的时候只要有一个副本就可以了)容错率:1
缺点:延迟高
Kafka选择了第二种方案,原因如下:
1.同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
2.虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。
2)ISR
采用第二种方案之后,设想以下情景:leader收到数据,所有follower都开始同步数据,但有一个follower,因为某种故障,迟迟不能与leader进行同步,那leader就要一直等下去,直到它完成同步,才能发送ack。这个问题怎么解决呢?
Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给producer发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。
3)ack应答机制
对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。
所以Kafka为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。
acks参数配置:
acks:
0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据;
1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据;
-1(all):producer等待broker的ack,partition的leader和ISR中的follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。
4)故障处理细节
Log文件中的HW和LEO
LEO:(Log End Offset)每个副本的最后一个offset
HW:(High Watermark)所有副本中最小的LEO

(1)follower故障
follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。
(2)leader故障
leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。
注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。
生产者幂等性
将服务器的ACK级别设置为-1,可以保证Producer到Server之间不会丢失数据,即At Least Once语义。相对的,将服务器ACK级别设置为0,可以保证生产者每条消息只会被发送一次,即At Most Once语义。
At Least Once可以保证数据不丢失,但是不能保证数据不重复;相对的,At Most Once可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即Exactly Once语义。在0.11版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。
0.11版本的Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指Producer不论向Server发送多少次重复数据,Server端都只会持久化一条。幂等性结合At Least Once语义,就构成了Kafka的Exactly Once语义。即:
At Least Once + 幂等性 = Exactly Once
要启用幂等性,只需要将Producer的参数中enable.idompotence设置为true即可(kafka自动将acks属性设为-1,并将retries属性设为Integer.MAX_VALUE。)。Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的Producer在初始化的时候会被分配一个PID,发往同一Partition的消息会附带Sequence Number。而Broker端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时,Broker只会持久化一条。
Producer重启,PID就会变化,所以幂等性只能保证单会话的Exactly Once。
Kafka生产者事务
Kafka从0.11版本开始引入了生产者事务,事务可以实现生产者向不同分区、不同topic发送的多条消息的原子性。
为了实现跨分区跨会话的事务,需要引入一个全局唯一的Transaction ID,并将Producer获得的PID和Transaction ID绑定。这样当Producer重启后就可以通过正在进行的Transaction ID获得原来的PID,开启事务后,生产者能够实现跨会话的幂等性。
2.kafka架构深入——生产者的更多相关文章
- 分布式发布订阅消息系统 Kafka 架构设计[转]
分布式发布订阅消息系统 Kafka 架构设计 转自:http://www.oschina.net/translate/kafka-design 我们为什么要搭建该系统 Kafka是一个消息系统,原本开 ...
- kafka架构浅显理解
Kafka的概念: 1. AMQP协议 Advanced Message Queuing Protocol (高级消息队列协议) The Advanced Message Queuing Protoc ...
- 分布式公布订阅消息系统 Kafka 架构设计
我们为什么要搭建该系统 Kafka是一个消息系统,原本开发自LinkedIn,用作LinkedIn的活动流(activity stream)和运营数据处理管道(pipeline)的基础. 如今它已为多 ...
- centos7单机安装kafka,进行生产者消费者测试
[转载请注明]: 原文出处:https://www.cnblogs.com/jstarseven/p/11364852.html 作者:jstarseven 码字挺辛苦的..... 一.k ...
- Kafka架构与原理
前言 kafka是一个分布式消息队列.具有高性能.持久化.多副本备份.横向扩展能力.生产者往队列里写消息,消费者从队列里取消息进行业务逻辑.一般在架构设计中起到解耦.削峰.异步处理的作用. kafka ...
- Kafka架构原理
Kafka架构原理 最终大家会掌握 Kafka 中最重要的概念,分别是 Broker.Producer.Consumer.Consumer Group.Topic.Partition.Replica. ...
- kafka架构、基本术语、消息存储结构
1.kafka架构 kafka处理消息大概流程 生产者发送消息给kafka服务器 消费者从kafka服务器(broker)读取消息 kafka服务器依靠zookeeper集群进行服务协调管理 2.ka ...
- 《Kafka笔记》4、Kafka架构,与其他组件集成
目录 1 kafka架构进阶 1.1 Kafka底层数据的同步机制(面试常问) 1.1.1 高水位截断的同步方式可能带来数据丢失(Kafka 0.11版本前的问题) 1.1.2 解决高水位截断数据丢失 ...
- 转 kafka架构简介
kafka架构 转 http://www.cnblogs.com/chushiyaoyue/p/5612298.html 相关文章: https://www.jianshu.com/p/6233d53 ...
随机推荐
- (七)、touch--创建文件或者更新时间戳
一.命令说明与格式 创建文件并更新时间戳,若要创建的文件名已经存在,则仅仅更新时间戳,而不改变其他任何信息 格式:touch [选项] 目录名/文件名 选项: -a ...
- Spring Boot 中使用 Quartz 实现任务调度
Quartz 概述 Quartz 是 OpenSymphony 开源组织在 Job Scheduling 领域又一个开源项目,它可以与 J2EE. J2SE 应用程序相结合也可以单独使用.Quartz ...
- ReentrantLock锁-CAS与阻塞
ReentrantLock锁 ReentrantLock通过原子操作和阻塞实现锁原理,一般使用lock获取锁,unlock释放锁 lock的时候可能被其他线程获得所,那么此线程会阻塞自己,关键原理底层 ...
- easyui中连接按钮样式
方法1. <a href="otherpage.php" class="easyui-linkbutton" data-options="ico ...
- [leetcode]49. Group Anagrams重排列字符串分组
是之前的重排列字符串的延伸,判断是重排列后存到HashMap中进行分组 这种HashMap进行分组的方式很常用 public List<List<String>> groupA ...
- String Boot有哪些优点
a.减少开发,测试时间和努力. b.使用 JavaConfig 有助于避免使用 XML.c.避免大量的 Maven 导入和各种版本冲突. d.通过提供默认值快速开始开发.没有单独的 Web 服务器需要 ...
- JavaDailyReports10_07
动手动脑① 1 package test_1; 2 3 public class Test { 4 5 public static void main(String[] args) { 6 // TO ...
- SpringBoot异常处理(一)
ERROR:严重问题,我们无法处理 EXCEPTION:RuntimeException 编译期不检查,出现问题需要我们修改代码 非RuntimeException(CheckedExceptio ...
- 一次MySQL死锁的排查记录
前几天线上收到一条告警邮件,生产环境MySQL操作发生了死锁,邮件告警的提炼出来的SQL大致如下. update pe_order_product_info_test set end_time = ' ...
- [新手教程]申请https泛域名解析
前置准备 教程开始,我们默认相信小伙伴们对基本的域名购买及解析有了一定的认识和实践 一个正常的域名 一台公网服务器 域名解析操作 如:现在我们要设置frps的泛域名解析 设置二级域名 frp.xx.c ...