基于Simple Image Statistics(简单图像统计,SIS)的图像二值化算法。
这是个简单的算法,是全局二值算法的一种,算法执行速度快。
算法过程简单描述如下:
对于每一个像素,做如下处理
1、计算当前像素水平和垂直方向的梯度。 (two gradients are calculated |I(x + 1, y) - I(x - 1, y)| and |I(x, y + 1) - I(x, y - 1)|);
2、取两个梯度的最大值作为权重。(weight is calculated as maximum of two gradients);
3、更新权重的和。(sum of weights is updated (weightTotal += weight));
4、更新加权像素之和 (sum of weighted pixel values is updated (total += weight * I(x, y)));
之后,最终的阈值去加权像素之和和权重之和相除的值。
这个算法在 Image Processing Lab in c# 的代码中有相关的说明。
从实际的操作上讲,我认为二值处理应该只针对灰度图像进行处理,这样才意义明确,因此,我在代码中给出了判断一副图像是否是灰度图像的一个函数:
private bool IsGrayBitmap(Bitmap Bmp)
{
bool IsGray;
if (Bmp.PixelFormat == PixelFormat.Format8bppIndexed) // .net中灰度首先必然是索引图像
{
IsGray = true;
if (Bmp.Palette.Entries.Length != ) // 这个要求其实在PS中是不存在的
IsGray = false;
else
{
for (int X = ; X < Bmp.Palette.Entries.Length; X++) // 看看调色板的每一个分两值是不是都相等,且必须还要等于其在调色板中出现的顺序
{
if (Bmp.Palette.Entries[X].R != X || Bmp.Palette.Entries[X].G != X || Bmp.Palette.Entries[X].B != X)
{
IsGray = false;
break;
}
}
}
}
else
{
IsGray = false;
}
return IsGray;
}
实际上,在PS的概念中,灰度图像的调色板个数不一定是256,只要调色板的每个元素的分量值都相等,并且都等于其在调色板中出现的顺序,PS就认为他是灰度图像。
为了处理方便,我加入了一个将其他模式的图像转换为灰度模式图像的函数:
private Bitmap ConvertToGrayModeBitmap(Bitmap Bmp)
{
int X, Y, SrcStride, DestStride, Width, Height;
byte* SrcData, DestData;
BitmapData BmpData = Bmp.LockBits(new Rectangle(, , Bmp.Width, Bmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);
Bitmap GrayBmp = new Bitmap(Bmp.Width, Bmp.Height, PixelFormat.Format8bppIndexed);
ColorPalette Pal = GrayBmp.Palette;
for (Y = ; Y < Pal.Entries.Length; Y++) Pal.Entries[Y] = Color.FromArgb(, Y, Y, Y); // 设置灰度图像的调色板
GrayBmp.Palette = Pal; // LockBits 在第一个参数和图像一样大,以及读取格式和原始一样的情况下,调用函数的时间为0,且每次调用后BitmapData的Scan0都相同,而在
// 其他的大部分情况下同样参数调用该函数返回的Scan0都不同,这就说明在在程序内部,GDI+为在创建图像时还是分配了和对应位图一样大小内存空间,
// 这样我们就可以再加载时调用一次该函数,并记住Scan0的值,然后直接用指针操作这一片区域,就相当于操作了图像。而不用每次都LOCK和UNLOCK了
// 从这个层次上说,该函数和GetDibits类似。 BitmapData GrayBmpData = GrayBmp.LockBits(new Rectangle(, , GrayBmp.Width, GrayBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);
Width = BmpData.Width; Height = BmpData.Height;
SrcStride = BmpData.Stride; DestStride = GrayBmpData.Stride; // 这个值并不一定就等于width*height*色深/8
for (Y = ; Y < Height; Y++)
{
SrcData = (byte*)BmpData.Scan0 + Y * SrcStride; // 必须在某个地方开启unsafe功能,其实C#中的unsafe很safe,搞的好吓人。
DestData = (byte*)GrayBmpData.Scan0 + Y * DestStride;
for (X = ; X < Width; X++)
{
*DestData = (byte)((*SrcData * + *(SrcData + ) * + *(SrcData + ) * ) >> ); //这里可以有不同的算法
SrcData += ;
DestData++;
}
}
Bmp.UnlockBits(BmpData);
GrayBmp.UnlockBits(GrayBmpData);
return GrayBmp;
}
在很多人心目中所谓的灰度图像就是R=G=B这样的图像,只能说这些人还是门外汉,太不专业了。 这样的图像只能算是颜色分量相同的彩色图像罢了,再次予以纠正。
由于上述所描述的算法涉及到了图像的四领域,因此我们采用类似PhotoShop算法原理解析系列 - 风格化---》查找边缘 一文中的哨兵算法,对备份的图像扩充边界,扩充部分的数据以原始图像边界处的值填充。因为只涉及到了四领域,因此需要在图像宽度和高度上分别增加2个像素即可。
关于填充数据,我还是喜欢自己分配内存,而且我更倾向于直接使用API,这个可能与个人习惯有关吧,你们也可以按照自己的方式来处理。
private byte GetSimpleStatisticsThreshold(Bitmap GrayBmp)
{
int Width, Height, Stride, X, Y;
int CloneStride, Ex, Ey;
int Weight = ;
long SumWeight = ; // 对于大图像这个数字会溢出,所以用long类型的变量
byte* Pointer, Scan0, CloneData; BitmapData GrayBmpData = GrayBmp.LockBits(new Rectangle(, , GrayBmp.Width, GrayBmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format8bppIndexed); Width = GrayBmp.Width; Height = GrayBmp.Height; Stride = GrayBmpData.Stride; CloneStride = Width + ; Scan0 = (byte*)GrayBmpData.Scan0;
CloneData = (byte*)GlobalAlloc(GPTR, CloneStride * (Height * )); for (Y = ; Y < Height; Y++)
{
*(CloneData + (Y + ) * CloneStride) = *(Scan0 + Y * Stride); // 填充左侧第一列像素(不包括第一个和最后一个点)
CopyMemory(CloneData + CloneStride * (Y + ) + , Scan0 + Y * Stride, Width);
*(CloneData + (Y + ) * CloneStride + Width + ) = *(Scan0 + Y * Stride + Width - ); // 填充最右侧那一列的数据
}
CopyMemory(CloneData, CloneData + CloneStride, CloneStride); // 第一行
CopyMemory(CloneData + (Height + ) * CloneStride, CloneData + Height * CloneStride, CloneStride); // 最后一行 for (Y = ; Y < Height; Y++)
{
Pointer = CloneData + (Y + ) * CloneStride + ;
for (X = ; X < Width; X++)
{
Ex = *(Pointer - ) - *(Pointer + );
if (Ex < ) Ex = -Ex;
Ey = *(Pointer - CloneStride) - *(Pointer + CloneStride);
if (Ey < ) Ey = -Ey;
if (Ex > Ey)
{
Weight += Ex;
SumWeight += *Pointer * Ex;
}
else
{
Weight += Ey;
SumWeight += *Pointer * Ey;
}
Pointer++;
}
}
GlobalFree((IntPtr)CloneData);
GrayBmp.UnlockBits(GrayBmpData);
if (Weight == ) return *(Scan0); // 说明所有的颜色值都相同
return (byte)(SumWeight / Weight);
}
一般情况下,为了程序的速度考虑,对于一些小函数我建议直接自己展开,比如上面的ABS函数,直接写成if (Ex < 0) Ex = -Ex会快一些的。你通过下面的反汇编可以看出不同:
Ex = Math.Abs(Ex);
00000161 js 00000167
00000163 mov eax,esi
00000165 jmp 0000016E
00000167 mov ecx,esi
00000169 call 638C54E4
0000016e mov esi,eax
if (Ex < 0) Ex = -Ex;
00000170 test eax,eax
00000172 jge 00000176
00000174 neg esi
分割的效果可能还是要拿具体的图像说事,这里不做过多评论。
工程下载地址:http://files.cnblogs.com/Imageshop/ThresholdUseSIS.rar
博客园的网站分类里居然没有图像处理一栏,只有计算机图形学一项,其实搞这一行的都知道,这两个是完全不同的行业。希望博客园考虑增加图像处理一栏。
***************************作者: laviewpbt 时间: 2013.7.21 联系QQ: 33184777 转载请保留本行信息*************************
基于Simple Image Statistics(简单图像统计,SIS)的图像二值化算法。的更多相关文章
- Opencv实现图像的灰度处理,二值化,阀值选择
前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多 ...
- Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化
原文:Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化 [函数名称] P分位法图像二值化 [算法说明] 所谓P分位法图像分割,就是在知道图像中目标所占的比率Rat ...
- OpenCV:图像的普通二值化
首先我们来看看图像二值化的过程,opencv一共有好几种不同的二值化算法可以使用,一般来说图像的像素,亮度等条件如果超过了某个或者低于了某个阈值,就会恒等于某个值,可以用于某些物体轮廓的监测: 导包: ...
- python实现图像二值化
1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...
- Java基于opencv实现图像数字识别(三)—灰度化和二值化
Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字 ...
- OpenCV_基于局部自适应阈值的图像二值化
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...
- Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化
原文:Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化 [函数名称] 简单统计法图像二值化 WriteableBitmap StatisticalThSegment(Wr ...
- opencv python 图像二值化/简单阈值化/大津阈值法
pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...
- 图像处理------基于Otsu阈值二值化
一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值 ...
随机推荐
- 在PHP语言中使用JSON和将json还原成数组
在之前我写过php返回json数据简单实例,刚刚上网,突然发现一篇文章,也是介绍json的,还挺详细,值得参考.内容如下 从5.2版本开始,PHP原生提供json_encode()和json_deco ...
- C++_系列自学课程_第_5_课_vector容器_《C++ Primer 第四版》
再一次遇到 vector 这个单词; 每一次见到这个单词都感觉这个单词非常的 "高大上"; 数字遇到vector马上就可以360度旋转: 当 "电" 遇到vec ...
- mybatis中的#和$的区别(转)
#相当于对数据 加上 双引号,$相当于直接显示数据 1. #将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是111,那么解析成sq ...
- ABP 初探 之User、Role、Permission数据库设计 (EntityFramework 继承的另一种使用方法)
最近群里(134710707)的朋友都在讨论ABP源码,我把最近学习的内容记录下来,同时也分享给大家,希望正在研究ABP源码的朋友有一定帮助. 上篇介绍ABP的多语言,本篇主要介绍权限的数据库设计,用 ...
- JavaScript判断变量值简单的方法
今天在看一个动态web表单设计器的时候发现项目中的 一个写法 function sum_total(v){ if (!v) { v= 0; } } !v 这是什么写法?不过可以肯定的是,这是一种判断 ...
- EF 分页查询优化
按照通常的方式分页查询至少要查询数据两遍,一个操作是查询总数,另一个是查询数据,这样有些耗时 这里介绍一个基于EF的插件 EntityFramework.Extended,当然这个插件有很多的功能,比 ...
- Sharepoint学习笔记—习题系列--70-576习题解析 -(Q105-Q108)
Question 105 You are designing a SharePoint 2010 application that contains a single list named Us ...
- Android 手机卫士--设置密码对话框
本文实现初次设置密码验证过程,首先实现如下效果 本文地址:http://www.cnblogs.com/wuyudong/p/5939823.html,转载请注明出处. 布局如下: <?xml ...
- iOS 学习 - 21 系统自带解析 XML
准备工作: new -> file -> other -> Empty ,在 Save As: 中随便起个名字后缀为 .xml 拷贝下面 <person> <stu ...
- 使用FragmentTabHost+TabLayout+ViewPager实现双层嵌套Tab
大多数应用程序都会在底部使用3~5个Tab对应用程序的主要功能进行划分,对于一些信息量非常大的应用程序,还需要在每个Tab下继续划分子Tab对信息进行分类显示. 本文实现采用FragmentTabHo ...