这是个简单的算法,是全局二值算法的一种,算法执行速度快。

算法过程简单描述如下: 

  对于每一个像素,做如下处理 

  1、计算当前像素水平和垂直方向的梯度。 (two gradients are calculated  |I(x + 1, y) - I(x - 1, y)| and |I(x, y + 1) - I(x, y - 1)|);

       2、取两个梯度的最大值作为权重。(weight is calculated as maximum of two gradients);

  3、更新权重的和。(sum of weights is updated (weightTotal += weight));

       4、更新加权像素之和 (sum of weighted pixel values is updated (total += weight * I(x, y)));

之后,最终的阈值去加权像素之和和权重之和相除的值。

这个算法在 Image Processing Lab in c# 的代码中有相关的说明。

从实际的操作上讲,我认为二值处理应该只针对灰度图像进行处理,这样才意义明确,因此,我在代码中给出了判断一副图像是否是灰度图像的一个函数:

  private bool IsGrayBitmap(Bitmap Bmp)
{
bool IsGray;
if (Bmp.PixelFormat == PixelFormat.Format8bppIndexed) // .net中灰度首先必然是索引图像
{
IsGray = true;
if (Bmp.Palette.Entries.Length != ) // 这个要求其实在PS中是不存在的
IsGray = false;
else
{
for (int X = ; X < Bmp.Palette.Entries.Length; X++) // 看看调色板的每一个分两值是不是都相等,且必须还要等于其在调色板中出现的顺序
{
if (Bmp.Palette.Entries[X].R != X || Bmp.Palette.Entries[X].G != X || Bmp.Palette.Entries[X].B != X)
{
IsGray = false;
break;
}
}
}
}
else
{
IsGray = false;
}
return IsGray;
}

  实际上,在PS的概念中,灰度图像的调色板个数不一定是256,只要调色板的每个元素的分量值都相等,并且都等于其在调色板中出现的顺序,PS就认为他是灰度图像。

为了处理方便,我加入了一个将其他模式的图像转换为灰度模式图像的函数:

    private Bitmap ConvertToGrayModeBitmap(Bitmap Bmp)
{
int X, Y, SrcStride, DestStride, Width, Height;
byte* SrcData, DestData;
BitmapData BmpData = Bmp.LockBits(new Rectangle(, , Bmp.Width, Bmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);
Bitmap GrayBmp = new Bitmap(Bmp.Width, Bmp.Height, PixelFormat.Format8bppIndexed);
ColorPalette Pal = GrayBmp.Palette;
for (Y = ; Y < Pal.Entries.Length; Y++) Pal.Entries[Y] = Color.FromArgb(, Y, Y, Y); // 设置灰度图像的调色板
GrayBmp.Palette = Pal; // LockBits 在第一个参数和图像一样大,以及读取格式和原始一样的情况下,调用函数的时间为0,且每次调用后BitmapData的Scan0都相同,而在
// 其他的大部分情况下同样参数调用该函数返回的Scan0都不同,这就说明在在程序内部,GDI+为在创建图像时还是分配了和对应位图一样大小内存空间,
// 这样我们就可以再加载时调用一次该函数,并记住Scan0的值,然后直接用指针操作这一片区域,就相当于操作了图像。而不用每次都LOCK和UNLOCK了
// 从这个层次上说,该函数和GetDibits类似。 BitmapData GrayBmpData = GrayBmp.LockBits(new Rectangle(, , GrayBmp.Width, GrayBmp.Height), ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);
Width = BmpData.Width; Height = BmpData.Height;
SrcStride = BmpData.Stride; DestStride = GrayBmpData.Stride; // 这个值并不一定就等于width*height*色深/8
for (Y = ; Y < Height; Y++)
{
SrcData = (byte*)BmpData.Scan0 + Y * SrcStride; // 必须在某个地方开启unsafe功能,其实C#中的unsafe很safe,搞的好吓人。
DestData = (byte*)GrayBmpData.Scan0 + Y * DestStride;
for (X = ; X < Width; X++)
{
*DestData = (byte)((*SrcData * + *(SrcData + ) * + *(SrcData + ) * ) >> ); //这里可以有不同的算法
SrcData += ;
DestData++;
}
}
Bmp.UnlockBits(BmpData);
GrayBmp.UnlockBits(GrayBmpData);
return GrayBmp;
}

在很多人心目中所谓的灰度图像就是R=G=B这样的图像,只能说这些人还是门外汉,太不专业了。 这样的图像只能算是颜色分量相同的彩色图像罢了,再次予以纠正。

由于上述所描述的算法涉及到了图像的四领域,因此我们采用类似PhotoShop算法原理解析系列 - 风格化---》查找边缘 一文中的哨兵算法,对备份的图像扩充边界,扩充部分的数据以原始图像边界处的值填充。因为只涉及到了四领域,因此需要在图像宽度和高度上分别增加2个像素即可。

关于填充数据,我还是喜欢自己分配内存,而且我更倾向于直接使用API,这个可能与个人习惯有关吧,你们也可以按照自己的方式来处理。

    private byte GetSimpleStatisticsThreshold(Bitmap GrayBmp)
{
int Width, Height, Stride, X, Y;
int CloneStride, Ex, Ey;
int Weight = ;
long SumWeight = ; // 对于大图像这个数字会溢出,所以用long类型的变量
byte* Pointer, Scan0, CloneData; BitmapData GrayBmpData = GrayBmp.LockBits(new Rectangle(, , GrayBmp.Width, GrayBmp.Height), ImageLockMode.ReadOnly, PixelFormat.Format8bppIndexed); Width = GrayBmp.Width; Height = GrayBmp.Height; Stride = GrayBmpData.Stride; CloneStride = Width + ; Scan0 = (byte*)GrayBmpData.Scan0;
CloneData = (byte*)GlobalAlloc(GPTR, CloneStride * (Height * )); for (Y = ; Y < Height; Y++)
{
*(CloneData + (Y + ) * CloneStride) = *(Scan0 + Y * Stride); // 填充左侧第一列像素(不包括第一个和最后一个点)
CopyMemory(CloneData + CloneStride * (Y + ) + , Scan0 + Y * Stride, Width);
*(CloneData + (Y + ) * CloneStride + Width + ) = *(Scan0 + Y * Stride + Width - ); // 填充最右侧那一列的数据
}
CopyMemory(CloneData, CloneData + CloneStride, CloneStride); // 第一行
CopyMemory(CloneData + (Height + ) * CloneStride, CloneData + Height * CloneStride, CloneStride); // 最后一行 for (Y = ; Y < Height; Y++)
{
Pointer = CloneData + (Y + ) * CloneStride + ;
for (X = ; X < Width; X++)
{
Ex = *(Pointer - ) - *(Pointer + );
if (Ex < ) Ex = -Ex;
Ey = *(Pointer - CloneStride) - *(Pointer + CloneStride);
if (Ey < ) Ey = -Ey;
if (Ex > Ey)
{
Weight += Ex;
SumWeight += *Pointer * Ex;
}
else
{
Weight += Ey;
SumWeight += *Pointer * Ey;
}
Pointer++;
}
}
GlobalFree((IntPtr)CloneData);
GrayBmp.UnlockBits(GrayBmpData);
if (Weight == ) return *(Scan0); // 说明所有的颜色值都相同
return (byte)(SumWeight / Weight);
}

  一般情况下,为了程序的速度考虑,对于一些小函数我建议直接自己展开,比如上面的ABS函数,直接写成if (Ex < 0) Ex = -Ex会快一些的。你通过下面的反汇编可以看出不同:

                Ex = Math.Abs(Ex);
00000161 js 00000167
00000163 mov eax,esi
00000165 jmp 0000016E
00000167 mov ecx,esi
00000169 call 638C54E4
0000016e mov esi,eax
if (Ex < 0) Ex = -Ex;
00000170 test eax,eax
00000172 jge 00000176
00000174 neg esi

  

分割的效果可能还是要拿具体的图像说事,这里不做过多评论。

工程下载地址:http://files.cnblogs.com/Imageshop/ThresholdUseSIS.rar

博客园的网站分类里居然没有图像处理一栏,只有计算机图形学一项,其实搞这一行的都知道,这两个是完全不同的行业。希望博客园考虑增加图像处理一栏。

***************************作者: laviewpbt   时间: 2013.7.21    联系QQ:  33184777  转载请保留本行信息*************************

基于Simple Image Statistics(简单图像统计,SIS)的图像二值化算法。的更多相关文章

  1. Opencv实现图像的灰度处理,二值化,阀值选择

    前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多 ...

  2. Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化

    原文:Win8 Metro(C#)数字图像处理--2.59 P分位法图像二值化  [函数名称]   P分位法图像二值化 [算法说明]   所谓P分位法图像分割,就是在知道图像中目标所占的比率Rat ...

  3. OpenCV:图像的普通二值化

    首先我们来看看图像二值化的过程,opencv一共有好几种不同的二值化算法可以使用,一般来说图像的像素,亮度等条件如果超过了某个或者低于了某个阈值,就会恒等于某个值,可以用于某些物体轮廓的监测: 导包: ...

  4. python实现图像二值化

    1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...

  5. Java基于opencv实现图像数字识别(三)—灰度化和二值化

    Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字 ...

  6. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  7. Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化

    原文:Win8 Metro(C#)数字图像处理--2.56简单统计法图像二值化  [函数名称] 简单统计法图像二值化 WriteableBitmap StatisticalThSegment(Wr ...

  8. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  9. 图像处理------基于Otsu阈值二值化

    一:基本原理 该方法是图像二值化处理常见方法之一,在Matlab与OpenCV中均有实现. Otsu Threshing方法是一种基于寻找合适阈值实现二值化的方法,其最重 要的部分是寻找图像二值化阈值 ...

随机推荐

  1. Asp.Net Core子应用由于配置中重复添加模块会引起IIS错误500.19

    ASP.NET Core已经从IIS中解耦,可以作为自宿主程序运行,不再依赖IIS. 但我们还是需要强大的IIS作为前置服务器,IIS利用httpPlatformHandler模块来对后台的一些web ...

  2. ComponentOne 2016 V3 发布

    ComponentOne Studio Enterprise 2016 V3 新特性 我们很高兴的宣布ComponentOne 2016 V3发布了!2016 Connect开发者大会上微软发布了Vi ...

  3. luogg_java学习_09_泛型_集合

    这篇博客总结了半天,希望自己以后返回来看的时候理解更深刻,也希望可以起到帮助初学者的作用. 转载请注明 出自 : luogg的博客园 , 泛型 泛型介绍 1).类内部的属性的类型可以由外部决定: 2) ...

  4. “三巨头”有变化,BAT还能走多久?

    在腾讯市值超越阿里巴巴后,市场分析多数认为,当年的BAT“三巨头”时代已经彻底结束,进入了“双寡头”时代了 从对外投资来看,BAT不同的投资逻辑可以推测其战略方向 撰文/梁云风 时评员,关注财经与互联 ...

  5. KMP算法-next函数求解

    KMP函数求解:一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为KMP算法.KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串 ...

  6. hibernate缓存(一级缓存、二级缓存)

    一.一级缓存(Session缓存)      意义:提高hibernate查询效率.      缺点:可能会因并发,产生数据不一致.      基于session的缓存,利用hibernate执行查询 ...

  7. 关于Lind.DDD.Api客户端的使用与知识分享

    回到目录 关于Lind.DDD.Api的使用与客户端的调用 作者:张占岭 花名:仓储大叔 框架:Lind.DDD,Lind.DDD.Api 目录 Api里注册全局校验特性 1 Api中设置全局的Cor ...

  8. svg.js教程及使用手册详解(二)

    上篇简要介绍了svg.js的基本信息和基本用法,这篇开始详细讲解svg.js的用法. SVG元素 SVG元素主要包括各种形状.线条.文本.路径. 矩形——Rect Rects有两个参数,即矩形的宽度和 ...

  9. 推荐15款制作 SVG 动画的 JavaScript 库

    在当今时代,SVG是最流行的和正在被众多的设计人员和开发人员使用,创建支持视网膜和响应式的网页设计.绘制SVG不是一个艰巨的任务,因为大量的 JavaScript 库可与 SVG 图像搭配使用.这些J ...

  10. include的用法例子,以及include+merge的用法例子

    [include+LinearLayout]的使用例子 AndroidIncludeLayout.java package com.AndroidIncludeLayout; import andro ...