发现 \(K\) 很小,不妨设置一个 \(O(NK)\) 的 \(DP\)。

发现可行的最短路必须满足是 \(d <= dis <= d + K\)。

由逆向思维,则是从某点出发,可以消耗 \(K\) 个单位的冗余长度,最终到达 \(n\)。

如何快速的计算出有走这条边冗余长度呢

首先建反向图跑 \(Dijkstra\),求出 \(dis[i]\) 表示从 \(i\) 到 \(n\) 的最短路距离。

假设有一条边 \((u, v)\),边长为 \(w\)

那么我现在从 \(u\) 到 \(n\) 的预算距离是 \(dis[v] + w\),最短距离是 \(dis[u]\)。

那么多走的就是 \(dis[v] + w - dis[u]\)。

设计 \(DP\) 状态表示:

\(f[i][j]\) 表示从 \(i\) 到 \(n\),以及消耗了 \(j\) 个单位的冗余长度的方案数。

状态转移:

设有边 \((u, v)\),边长为 \(w\)

则有 \(f[u][j] += f[v][j - (dis[v] + w - dis[u])]\)。

边界 \(f[n][0] = 1\),其余为 \(0\)。

答案 \(\sum_{i = 0}^{K} f[1][i]\)。

无穷解的判断:

发现有无穷解,当且仅当:

有一个总权为 \(0\) 的环。

我们可以在 \(DP\) 的时候搞一个 \(vis\) 数组判断,就不需要单独判无穷解了。

时间复杂度

整个过程用记忆化搜索实现,由于一共有 \(NK\) 个状态,每个点被枚举 \(K\) 次,即每条边总体被枚举 \(K\) 次。

所以复杂度 \(O(K(N + M))\)。

\(Tips:\)

  1. 可能走到 \(n\) 再折回去,所以 $u = n $ 时不能直接 \(return\)
  2. 可能存在经过 \(n\) 点的 \(0\) 环,所以到 \(n\) 点时顺便判一下环。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#include <vector>
#include <cstdlib>
using namespace std;
typedef pair<int, int> PII;
const int N = 100005, M = 400005, S = 51;
int n, m, K, P, f[N][S], dis[N];
int head[N], rhead[N], numE[2];
bool st[N], vis[N][S], ep = false;
struct E {
int next, v, w;
}e[M], r[M];
//建图
void inline add(E g[], int h[], int u, int v, int w, int p) {
g[++numE[p]] = (E) { h[u], v, w };
h[u] = numE[p];
}
//多组数据初始化
void inline init() {
ep = false;
memset(dis, 0x3f, sizeof dis);
memset(st, false, sizeof st);
numE[0] = numE[1] = 0;
memset(head, 0, sizeof head);
memset(rhead, 0, sizeof head);
memset(f, -1, sizeof f);
}
// Dijkstra 最短路
priority_queue<PII, vector<PII>, greater<PII> > q;
void inline dijkstra() {
dis[n] = 0; q.push(make_pair(0, n));
while(!q.empty()) {
PII u = q.top(); q.pop();
if(st[u.second]) continue;
st[u.second] = true;
for (int i = rhead[u.second]; i; i = r[i].next) {
int v = r[i].v;
if(dis[u.second] + r[i].w < dis[v]) {
dis[v] = dis[u.second] + r[i].w;
q.push(make_pair(dis[v], v));
}
}
}
} //记忆化搜索
int dfs(int u, int j) {
if(vis[u][j]) { ep = true; return 0; }
if(f[u][j] != -1) return f[u][j]; vis[u][j] = true;
int &val = f[u][j] = 0;
for (int i = head[u]; i; i = e[i].next) {
int v = e[i].v, w = e[i].w;
//消耗的冗余长度折算
int k = j - (dis[v] + w - dis[u]);
if(0 <= k && k <= K) (val += dfs(v, k)) %= P;
if(ep) return 0;
} vis[u][j] = false;
if(u == n && j == 0) val = 1;
return val;
} int main() {
int T; scanf("%d", &T);
while(T--) {
init();
scanf("%d%d%d%d", &n, &m, &K, &P);
for (int i = 1, u, v, w; i <= m; i++) {
scanf("%d%d%d", &u, &v, &w);
add(e, head, u, v, w, 0); add(r, rhead, v, u, w, 1);
} dijkstra(); int ans = 0;
for (int i = 0; i <= K; i++) {
memset(vis, false, sizeof vis);
(ans += dfs(1, i)) %= P;
if(ep) break;
}
if(ep) puts("-1");
else printf("%d\n", ans);
}
}

NOIP2017 D1T3 逛公园的更多相关文章

  1. [luogu P3953] [noip2017 d1t3] 逛公园

    [luogu P3953] [noip2017 d1t3] 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张$N$个点$M$条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,$N ...

  2. NOIP2017 D1T3逛公园

    DP+最短路 两遍最短路判零环 DP转移f[i][j] 到点i的距离比最短路多j时的方案数 #include<bits/stdc++.h> using namespace std; ; s ...

  3. 【NOIP2017】逛公园 拆点最短路+拓扑(记忆化搜索

    题目描述 策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策 ...

  4. 【NOIP2017】逛公园(最短路图,拓扑排序,计数DP)

    题意: 策策同学特别喜欢逛公园. 公园可以看成一张 N 个点 M 条边构成的有向图,且没有自环和重边.其中 1 号点是公园的入口, N 号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花 ...

  5. NOIP2017:逛公园

    Sol 发现\(NOIP2017\)还没\(AK\)??? 赶紧改 考场上明明打出了\(DP\),没时间了,没判环,重点是没初始化数组,爆\(0\) \(TAT\) 先最短路,然后\(f[i][j]\ ...

  6. 【NOIP2017】逛公园 最短路+DP

    诶,去年场上不会处理$0$的环,只拿了$60$有点可惜. 我们先不管边边权为$0$的边. 我们先跑一次最短路,令$dis[u]$表示从$1$至$u$的最短路的长度. 那么根据题目的要求,从起点走到$u ...

  7. LOJ2316. 「NOIP2017」逛公园【DP】【最短路】【思维】

    LINK 思路 因为我想到的根本不是网上的普遍做法 所以常数出奇的大,而且做法极其暴力 可以形容是带优化的大模拟 进入正题: 首先一个很显然的思路是如果在合法的路径网络里面存在零环是有无数组解的 然后 ...

  8. 【NOIP2017】逛公园 D1 T3

    记忆化搜索 跑一次反向的最短路求出MinDis(u,n)MinDis(u,n)MinDis(u,n) f[u][k]f[u][k]f[u][k]表示dis(u,n)<=MinDis(u,n)+d ...

  9. 【LOJ2316】「NOIP2017」逛公园

    [题目链接] [点击打开链接] [题目概括] 对给定\(K\),起点\(1\)到终点\(n\)中对长度为\([L,L+K]\)的路径计数. \(L\)为\(1\)到\(n\)的最短路长度. [思路要点 ...

随机推荐

  1. mysql开发常用技巧总结

    1.查询某个schema,某张表的创建时间. SELECT CREATE_TIME FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA='db_camp ...

  2. arm64大服务器安装ubuntu18看不到安装界面

    前言 最近在使用arm的大服务器需要用到ubuntu相关的一些东西,在操作系统安装过程中遇到了一些问题 记录 华为鲲鹏服务器 这个默认安装centos的都很顺利,安装ubuntu18最新的,impi就 ...

  3. JavaScript监听页面可见性(焦点)同时改变title的三种方法

    JavaScript监听页面可见性(焦点)同时改变title的三种方法 本文参考了https://developer.mozilla.org/zh-CN/docs/Web/API/Page_Visib ...

  4. Apache Flink Dashboard未授权访问导致任意Jar包上传漏洞

    漏洞危害 攻击者无需Flink Dashboard认证,通过上传恶意jar包 csdn-[漏洞复现]Apache Flink任意Jar包上传导致远程代码执行 freebuf-Apache Flink ...

  5. PHP代码审计入门(敏感函数回溯参数过程)

    最近开始啃<代码审计企业级web代码安全架构>这本书,这一章内容看了2天很多内容都理解最主要的是对PHP不熟练所以现在理解了大概 然后进行实地环境搭建最主要的是源码百度真不好找 最后找到一 ...

  6. windbg 分析cpu异常

    1.   !threadpool  查看当前CPU状况 线程数等等 2.   !runaway 查看那几个线程使用的高 建议多抓几个dump 然后确定到底是哪个线程 3.   ~线程IDs 跳转到那个 ...

  7. python多线程——如何停止一个死循环的线程

    进程想要执行任务就需要依赖线程.换句话说,就是进程中的最小执行单位就是线程,并且一个进程中至少有一个线程. 那什么是多线程?提到多线程这里要说两个概念,就是串行和并行,搞清楚这个,我们才能更好地理解多 ...

  8. ABBYY FineReader 与尚书七号OCR的对比

    ABBYY FineReader 与尚书七号OCR都是帮助我们识别文字的工具,使用的都是OCR技术,如今文字识别工具是我们学习和工作经常会使用的,它们的功能是否实用和好用?现在通过对比的方式来探讨. ...

  9. MGR(MySQL Group Replication)部署测试

    1. 环境说明 192.168.11.131 mgr1 主节点 192.168.11.132 mgr2 从节点 192.168.11.133 mgr3 从节点 2. 在mgr1.mgr2.mgr3上安 ...

  10. H5,Css小姐又作画了

    用H5和CSS3做出自己名字缩写. <html> <head> <meta charset="utf-8"> <title>name ...