删区间

题意:

给出一个长度为的数组,你每次需要选出一个长度大于1的区间[, ]并删掉它,代价

是左右端点的元素之差的绝对值| − |,之后再将左右两个数组接起来构成一个新的数组。

你的任务是要求出删除整个数组的最小代价和。

题解:

40pts

暴力区间 dp

70pts:

设 \(f[i]\) 表示删完 \(1-i\) 这段区间的最小代价

转移时枚举这次删去的区间的左端点,在取个 \(min\) 就可以.

具体方程长这样

f[i] = min(f[i], f[j-1] + abs(a[i]-a[j])

100pts

观察一下上面的转移柿子,发现是不可以用单调队列优化的,一个取绝对值就很难处理。

当时考试的时候我就卡在这里没想出来,然后就暴力滚粗了。

实际上,我们的转移柿子可以写成这样:

[] = [ − 1] − + , ≤
f[i] = [ − 1] + − , >

可以维护两棵权值线段树,一个维护最小值 \(f[j-1] - a[j]\) 一个维护 \(f[j-1] + a[j]\)

在 \(1-Ai\) 区间里取最小值 \(f[j-1] - a[j]\) 在 \(Ai - \infty\) 区间里取最小值 \(f[j-1] + a[j]\)

最后不要忘记把权值离散化;

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define int long long
const int N = 5e5+10;
const int inf = 1e13;
int n,tot,f[N],a[N],h[N],rk[N],tr[N<<2][2];
inline int read()
{
int s = 0, w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s =s * 10+ch - '0'; ch = getchar();}
return s * w;
}
void up(int now,int o)
{
tr[o][now] = min(tr[o<<1][now],tr[o<<1|1][now]);
}
void build(int now,int o,int L,int R)
{
tr[o][now] = inf;
if(L == R)
{
tr[o][now] = inf;
return;
}
int mid = (L + R)>>1;
build(now,o<<1,L,mid);
build(now,o<<1|1,mid+1,R);
}
void chenge(int now,int o,int L,int R,int x,int val)
{
if(L == R)
{
tr[o][now] = min(tr[o][now],val);
return;
}
int mid = (L + R)>>1;
if(x <= mid) chenge(now,o<<1,L,mid,x,val);
if(x > mid) chenge(now,o<<1|1,mid+1,R,x,val);
tr[o][now] = min(tr[o<<1][now],tr[o<<1|1][now]);
}
int query(int now,int o,int L,int R,int l,int r)
{
int res = inf;
if(l <= L && r >= R) return tr[o][now];
int mid = (L + R)>>1;
if(l <= mid) res = min(res,query(now,o<<1,L,mid,l,r));
if(r > mid) res = min(res,query(now,o<<1|1,mid+1,R,l,r)); return res;
}
signed main()
{
// freopen("remove.in","r",stdin);
// freopen("remove.out","w",stdout);
n = read();
for(int i = 1; i <= n; i++)
{
a[i] = h[i] = read();
}
sort(a+1,a+n+1);
tot = unique(a+1,a+n+1)-a-1;
for(int i = 1; i <= n; i++)
{
rk[i] = lower_bound(a+1,a+tot+1,h[i])-a;
}
build(0,1,1,tot); build(1,1,1,tot);
f[1] = inf;
for(int i = 2; i <= n; i++)
{
chenge(0,1,1,tot,rk[i-1],f[i-2] - h[i-1]);
chenge(1,1,1,tot,rk[i-1],f[i-2] + h[i-1]);
int t1 = query(0,1,1,tot,1,rk[i]) + h[i];
int t2 = query(1,1,1,tot,rk[i],tot) - h[i];
f[i] = min(t1,t2);
}
printf("%lld\n",f[n]);
fclose(stdin); fclose(stdout);
return 0;
}

9.13 考试 T2 区间的更多相关文章

  1. 2021.9.13考试总结[NOIP模拟52]

    T1 路径 考虑每一位的贡献,第$i$位每$2^i$个数会变一次,那么答案为$\sum_{i=1}^{log_2n} \frac{n}{2^i}$. $code:$ 1 #include<bit ...

  2. 2021.8.13考试总结[NOIP模拟38]

    T1 a 入阵曲.枚举矩形上下界,之后从左到右扫一遍.用树状数组维护前缀和加特判可以$A$,更保险要脸的做法是双指针扫,因为前缀和单调不减. $code:$ 1 #include<bits/st ...

  3. 2019.3.12考试&2019.3.13考试&ESTR

    过程:太菜了,不写了 T1 基环树直径,一定学 T2 树上斜率优化,类似购票,数据结构/分治算法,一定改 (把点按深度排序倒着跑2e7次斜率优化也能A,orz zyz) T3 CC原题,码码码,一定补 ...

  4. 某考试T2 frog

    题目背景 无 题目描述 数轴上有 n 只青蛙,分别编号为 1 到 n.青蛙 i 的初始位置的坐标为 xi. 它们准备进行如下形式的移动:每轮包括 m 次跳跃,第 i 次跳跃由青蛙 ai(1 < ...

  5. 某考试 T2 Tree

    2 树 2.1 题目描述 给一棵n 个节点的树,节点分别编号为0 到n - 1.你可以通过如下的操作来修改这棵树:首先先删去树上的一条边,此时树会分裂为两个连通块,然后在两个连通块之间加上一条新的边使 ...

  6. 某考试 T2 yja

    2.1 Description 在平面上找 n 个点, 要求这 n 个点离原点的距离分别为 r1, r2, ..., rn. 最大化这 n 个点构成的凸包面积, 凸包上的点的顺序任意. 2.2 Inp ...

  7. 题解 2020.10.24 考试 T2 选数

    题目传送门 题目大意 见题面. 思路 本来以为zcx.pxj变强了,后来发现是SPJ出问题了...考试的时候感觉有点人均啊...结果自己还是只想出来一半. 我们假设 \(f(x)=(\lfloor\f ...

  8. NOI-OJ 1.13 ID:23 区间内的真素数

    整体思路 这里需要大量使用素数,必须能够想到只求出M到N之间的素数是不够的,因为M到N之间数字的反序有可能是大于M或小于N的数字,例如M=2,N=20,那么19的反序91大于20,所以使用埃拉拖色尼算 ...

  9. 【nowcoder】 4th T2 区间

    题目链接:https://www.nowcoder.com/acm/contest/175/B 当你为时间复杂度挠头的时候 别人已经33行拿满分了 #include<cstdio> #in ...

随机推荐

  1. android studio 如何进行格式化代码 快捷键必备

    在Eclipse中,我们一般使用Ctrl+Shift+F来格式化代码,Android Studio中需要换成: Reformat code CTRL + ALT + L (Win) OPTION + ...

  2. Mysql性能参数优化

    1.Max_connections (1)简介 Mysql的最大连接数,如果服务器的并发请求量比较大,可以调高这个值,当然这是要建立在机器能够支撑的情况下,因为如果连接数越来越多,mysql会为每个连 ...

  3. android Studio(3.1) 常用快捷键

    说  明 快捷键 全部保存 Ctrl + S 最大话/最小化编辑器 Ctrl + Shift + F12 搜索内容(包括代码和菜单) 按两次Shift 查找 Ctrl + F 查找下一个 F3 查找上 ...

  4. hdu 4010 Lct动态链接树

    #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include & ...

  5. 记一次内存飙升的Windbg

    背景 突然间接到运维的报警,我们一个服务,内存找过了6GB的占用.才6GB 也不是很大,因为在处理别的事情,服务dump一下暂时一放,然后半小时之后,接到了运维的Kafka堆积报警.然后切换着重启了一 ...

  6. HDU-4417-Super Mario(主席树解法)

    Mario is world-famous plumber. His “burly” figure and amazing jumping ability reminded in our memory ...

  7. 小白也能弄懂的卷积神经网络(Convolutional Neural Networks )

    本系列主要是讲解卷积神经网络 - Convolutional Neural Networks 的系列知识,本系列主要帮助大家入门,我相信这是所有入门深度学习的初学者都必须学习的知识,这里会用更加直接和 ...

  8. -1>1?! unsigned int的世界不简单

    编程语言提供了很多的基本数据类型,比如char,int,float,double等等.在C和C++的世界中,还有一种类型,叫做无符号数据,修饰符位unsigned,比如今天要说的unsigned in ...

  9. 深入分析Linux内核链表

    1. 普通单链表 2. 内核链表 上图是本人从其他博客盗来的,差点被糊弄过去. 下图是本人自己用KeyNote画的(唉!!画图真的是让人心好累啊!!). 差异是不是很明显啊?! Read The Fu ...

  10. hystrix(4) properties配置

    这一节我们来讲hystrix的properties配置体系,properties配置也是各个功能模块的基础功能.hystrix将配置分成三个部分: 1.HystrixCommandProperties ...